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Recap: constrained formulations

Primal L;-SVM Dual L;-SVM
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Feature Map

What happens if linear separation is not enough?

Idea: mapping the data of the input space onto a higher
dimensional space called feature space and to define a linear
classifier in this feature space.
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Feature map

A linear separation surface in the feature space is a nonlinear
separation surface in the input space

Data projected to R~2 (hyperplane projection shown)

Data in R"3 (separable w/ hyperplane)
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Nonlinear mapping
We map x — ®(x) into a possibly higher dimensional space

6(x) = [$1(x), ¢2(x),.. 1"

Look to the primal

min —||W||2+CZ§,
[ ¢( )+b:|>1_£l
620

we need to explicitly know the mapping ¢.
The size of w is the size of ¢(x), that may be infinite dimensional:
how can | compute sgn(w ' ¢(x) + b)?

min J T xfaa—eTa
min ZZyMﬁ ¢(x)aja

stoa y O © s
0<a<C
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Kernel Trick

Hint: the vectors ¢(x) always appear within an inner product

@ in the dual objective function the elements of Q are of the
form y'y ¢ (x") T é(x/)
® in the decision function we have

I}
F(x) = sgn(w*"x + b%) = sgu()_ aid(x') ¢(x) + b)
i=1

Use kernel trick to get back to a finite number of variables
It would be enough to have ¢(x)" ¢(y) in closed form
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Kernel function

Given a set X C R", a symmetric function
K: XxX—=>R

isa kernel if

K(X,y):QS(X)T(;S(y) Vx,y € X, (1)

where ¢ is an application X — H and H is an Euclidean space

Let K: X x X — R be a symmetric function. Then K is a kernel
if and only if, for any choice of the vectors x!,..., x’ in X the
Gram matrix

K= [K(Xi’xj)]i,jzl,..,,ﬁ

is positive semidefinite.
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Nonlinear SVM

Using the definition of kernel the dual training problem becomes
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,_ :

= i=1
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i=1
0<C¥,’§C i:1,...,/.
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The decision function becomes
l .
f(x) = sgn (Z afK(x', x) + b*) .

i=1
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Examples of kernels

x' e R3, p(x') € R1O:

o(x) = [1,V2x{, V244, V2x4, (x)%, (x3)?, (4)?,
\/EX]’:Xé., ﬁx{xé, \/ﬁxéxé]T

Then ¢(x)Tp(x) = (1 + X"ij)2

Commonly used kernels:
Polynomial kernel K(x,z) = (xTz+ 1)P (p integer >1)
Gaussian kernel K(x,z) = e-x=2I?/29* (5 > 0)
Hyperbolic kernel K(x,z) = tanh(Bx"z + ) (for suitable
values of 5 and 7)

[Look at new hyper parameters to be tuned !]
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Gaussian Kernel

K(x,y) can be an inner product in infinite dimensional space.
Assume x € R and v > 0

2 2
e~ Ixi—xl? — a=v(xi—x)* — =X 27X =X

—e —x? —’yx (1 + 2’Yx,xj + (2'7x,xj) + (2’VX,XJ) T

- 2
B LW - -

/GG ) o)To)

6(x) = [ \/Z \/2’”2 \/ 7!)3X3,...]T
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SVM and RBF networks

Gaussian kernel K(x,z) = e~I=2I?/29* (5 > 0).
The decision function is:

/
falx) = sgn (Z A;-*y"e-“X—X"'z/M)

i=1

the output of a shallow RBF
network where the number of

neurons and centers are the 5 %)
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Training Problems

Training a SVM amounts to solve either the primal problem (huge
number of constraints) or the dual (huge number of variables)

Primal L;- SVM Dual L;- SVM
1 ’ 1
min o |w|]® + C;& iy pefe—cle
y' [wTxi+b] > 1-¢ st @y =0
£>0 0<a<C

(Two Loop optimization]

® hyperparameters choice C & kernel’s parameters (heuristic)
® parameter optimization w, b (primal) or « (dual) (exact)

Some example of joint selection with Gaussian Kernel involviggsin
MINLP [3].
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Solving the dual

Consider the convex quadratic programming problem for SVM
training in the case of classification problems:

min f(a)= 3a"Qa—eTa
S.t. yTa=0 (3)
0<a<C,

where @ is a | x | symmetric and positive semidefinite matrix,
e € R is the vector of ones, y € {—1,1}/, and C is a positive
scalar.

The Hessian matrix Q is dense, cannot be fully stored so that
standard methods for quadratic programming cannot be used.

© s
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Optimality conditions
Thanks to the special structure of the constraints the KKT
conditions can be written ia a very compact form

KKT conditions

A feasible point a* is a global solution iff

P L1 Py L Co R R

Yi T jeS(a*) Yj

R(CM) = {i : (Oé,' = 0,&}/,' = 1), (Oé,‘ = C,&y,- = —1), (0 <o < C)}

S(a) ={i: (i =0,&y; = —1),(aj = C,&y; =1), (0<aj < ()},
It is equivalent to state that o* is a global solution iff A a feasible
and descent direction in o, i.e.

0<min Vf(a*)Td
d feasible in o

© s
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From optimality conditions to sparse algorithms

Given a current estimate o (not KKT), a (conditional) gradient
method takes a step along a d solving the LP

min  Vf(aX)Td

d feasible in o

[The direction is NOT sparse: heavy update of Vf and f)

min  Vf(a¥)Td
d feasible in «
d sparse

k

Decomposition methods

Choosing sparse d amounts changing only few components
ie Wkc{1,....I} of
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Decomposition Methods

The vector of variables o is partitioned into two subvectors
(), akW), where the working set W C {1,...,/} identifies the

variables to be updated and W = {1,...,/}\ W.

O(k+1 _ {O[* )
w

ayy = arg min (on,oz—)
aw

T T k
Ywow = — Yyl

Use the update

T

where

@ oo
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Practical choices

(Sparsity [|d]lo = |W¥| = g > 2]

g must be greater than or equal to 2, due to the presence of
the constraint y"av =0
Saving in gradient update

V(oK) = VF(e¥)+Q (akﬂ — ozk) = VF(aX)+ Z Qi(af ™ —ak)
ieWk

Starting from the feasible a® = 0 allow iterative update from

Vi(a®) = —e
The full matrix @ is never used

© v
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Choice of the working set

Working set

The selection rule of W* strongly affects convergence and speed of
the algorithm

(Manage a trade—off]

- Sequential Minimal Optimization (SMO) algorithms,
where g = 2;

- General Decomposition Algorithms, where g > 2 (around
10 in standard implementation SVM'igt).

© v
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SMO-MVP

At each iteration k, in a SMO algorithm a quadratic subproblem of
dimension 2 must be solved, and it is done analitically whch is
equivalent to move along a feasible and descent directions having
only two nonzero elements.

[How do we find such sparse direction ?]
From the violated KKT

. {_(w(ak»;}> . {_(Vf(ak»j}_

iER(ak) Yi Yj

o) ()

gives a descent direction.
Selection of a simple violating pairs is not sufficient to guarafffee .

convergence.
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Maximal Violating Pair

A convergent SMO algorithm can be defined using pairs of indices
that most violates the optimality conditions.
A maximal violating pair i € I(a), j € J(a) with

I(a) = {i: i € arg max {—m}}

iER(a) Yi
. : (Vf(a))j}}
J(o)=4qj: j€arg min { ————=
(a) {J J gjes(a){ "
corresponds to select a direction solving
min  Vf(a*)Td

d feasible in o
|d[lo =2

k

© v
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SMO-MVP

® Inizialization. Set a® = 0 Vf(a®) = —e, k = 0.

° While ( the stopping criterion is not satisfied )

@ sclect i € I(aX), j € J(ak), and set W = {i,j};
@ compute analytically a solution a* = (o} )
© set of ' = aj;
O sct V(akt!) = VF(ak) + Z,',J-(Oz#rl —ak)Qp;
@ set k=k+1.

® end while

e Return oX

(Implemented in LIBSVM)

© v
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The two Ioops stage

Settlng hyperparameters: C & ~: a toy example ]

|
‘o

raphic Interface on https:www.csie.ntu.edu.twcjlinlibsvm
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Unbiased SVM b =10

min lATKA —e’)\
AeR! 2
st. 0<ALC

The dual has only box constraints, and the cardinality of the
working set can be set equal to 1!

(Coordinate descent)

® select a component / holding all components aJ’.‘H = aj-‘,j #£
® solve in closed form

k
ot = min {C, max {O,a,’f — M}}
Qii
® casy trick for efficient gradient update for linear SVM
(memorize intermedate w = Y Afy'x)
® Accuracy reached fast © s

Implemented in Liblinear
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Primal algorithms

® |ntuitively, kernel should give superior accuracy than linear.
Roughly speaking, from the Taylor expansion of the Gaussian
(RBF) kernel, linear SVM is a special case of RBF-kernel SVM

¢ Dual solution often not sparse (many support vectors)

e for some problems, accuracy by linear is as good as nonlinear,
but training and testing are much faster

® Primal algorithms reach approximate solution faster [2]

® [ ose the kernel. However the representer theorem which
states that the optimal decision function can be written as a
linear combination of kernel functions evaluated at the
training samples allow to recover non linearities.

© s
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Cutting Plane Methods

Primal formulation with b =10

i Liwiz 4
min Slwl® + Zé,
sty [wTx] — 1+g,zo i=1,...,1
§ >0 i=1,...,1

Equivalent formulation: the Structural Classification SVM
(SVMstruct [4])

1
= C
min Slwl”+ C¢¢

/ /
1 r i L /
s.t. Tw zc,-yx 27;c;—§.Vce{O,l}
£>0

It has an exponential number of constraints, BUT only one slack

¥ dhiee
all the constraints with precision ¢, then the point (w,{ + €) Is

variable that is directly related to the infeasibility. If (w,¢)
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Cutting Plane Algorithm

e I|nizialization. W = ().
® Repeat
@ update (w, &) with the solution of

1
min §|\W||2 + C¢

. I s 1 l (5)
s.t. VCEW.7W ;c,-yx 27;c,-—§
@ fori=1,..../
o 1 ify'w'x <1
"7 1 0 otherwise.
end for
O set W=WU{c}.
e Until ( accuracy reached ) © v

® Return (w,§)
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Unconstrained Formulations

Different unconstrained formulation of the primal problem can be
defined:

/
1 , ,
I’J‘IVIE EHWH2 + C; max{0,1 — y'(w'x" + b)} L1-SVM.

I
1 . .
rpvllr; §||W”2 + Cz; max?{0,1 — y'(wx" + b)} L,-SVM
=
Another possibility is to replace the constraints

yi(wTx! 4+ b) > 1 — ¢, by the equality constraints

yi(wTx! 4+ b) =1 — €. This leads to a regularized linear least

squares problem

/
1 2 H /

in = C "(wTx' 4+ b) — 1) LS-SVM

w,|22HWH * ;(y(w X +b) =) © s
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Unconstrained Formulations
The general unconstrained formulation takes the form

mmR(wb—l—CZwax,y) (6)
i=1

where R(w, b) is the regularization term and L(w, b; x', y') is
the loss function associated with the observation (x',y').

For nonlinear SVM the representer theorem is used, that
/

amounts to set w = ZB, . As an example, the optimization

problem corresponding to L,-SVM is

/
- TK +C 2 0 1— i TKi,
min 5 L8TKp > max*{0,1-y'8TK;}

i=1

where K is the kernel matrix associated to the mapping ¢ arff@

is the i—th column.
L. Palagi SVM - Alg
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Unconstrained Methods

Primal method the non smooth formulation L;-SVM (b = 0)

/
min —||W||2 + Z max {O, 1-— inTxi}
i=1

weRn 2

T 0 if 1— ywk xI <0
vk(i):aw (max{O,l—y’wka’}) :{ T ! }TW =
—y'x', otherwise.

Pegasos is a stochastic sub-gradient method [6]

@ oo
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Stochastic Subgradient for L;-SVM

Stochastic Subgradient
Set w! =0

® For k=1,2,...
e Pickie{l...,/} uniformly at random
e Set 0, f(wk) = dwk + vK(i)

o Update

1

k+1 _ |k k
w =w" — —0,f(w

k/\ w ( )
¢ Until (stopping criterion)
e Qutout wk

© s
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Conclusion

Many others algorithms (Interior point, second order semismooth
etc)[5, 1]

[ Optimization is very useful for machine Iearning}

Machine learning knowledge must be exploited in designing
effective optimization algorithms and software J

@ s
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