Data integration: A theoretical perspective

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
Universit a di Roma “La Sapienza”

Tutorial at PODS 2002

Madison, Wisconsin, USA, June 2002

Data integration I

Query

Global schema

it N\

I ———

R| C | D
G d;
G d,

Source schema ;

A

Source schema

Maurizio Lenzerini 1

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

Formal framework I

A data integration system 7 is a triple (G, S, M), where
e J is the global schema (over an alphabet Ag)
e S is the source schema (over an alphabet As)

e M is the mapping between G and S
Semantics of Z: which are the databases that satisfy 7 (models of Z)?

We refer only to databases over a fixed infinite domain 1', and we start with a source

database C, (data available at the sources, also called source model) over I'. The

set of databases that satisfy Z relative to C is:

sem®(Z) ={B | B islegalwrtG
and satisfies M wrtC }

Semantics of queries to II

A query ¢ of arity n is a FOL formula with n free variables.

If D is a database, then qD denotes the extension of ¢ in D (i.e., the set of valuations

in I for the free variables of ¢ that make ¢ true in D).

If ¢ is a query of arity n posed to a data integration system Z (i.e., a query over Ag),

then the set of certain answersto ¢ wrt Z and C is

T {(c1,...,¢cn) € q° | VB € semC(I)}

Databases with incomplete information I

e Traditional database: one model of a first-order theory

Query answering means evaluating a formula in the model.

e Database with incomplete information: set of models (specified, for example, as a

restricted first-order theory)

Query answering means computing the tuples that satisfy the query in all the

models in the set.

There is a strong connection between query answering in data integration and query

answering in database with incomplete information under constraints.

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

The mapping I

How is the mapping M between G and S specified?

e Are the sources defined in terms of the global schema?

Approach called source-centric , or local-as-view , or LAV

e |s the global schema defined in terms of the sources?

Approach called global-schema-centric , or global-as-view , or GAV.

e A mixed approach?

Approach called GLAV.

e Mapping between sources, without global schema?

Approach called P2P.

GAV vs LAV — example I

Global schema : movie(Title, Year, Director)
european(Director)

review(T'itle, Critique)

Source 1: ri(Title, Year, Director) since 1960, european directors
Source 2: ro(Title, Critique) since 1990
Query:: Title and critique of movies in 1998

4D. movie(T', 1998, D) A review(T', R), written
{ (T, R) | movie(T,1998, D) A review(T', R) }

Maurizio Lenzerini 8

Formalization of LAV I

In LAV, the mapping M is constituted by a set of assertions:

—

¢g (sound source) VX (s(X) — ¢g(X))
¢g (exactsource) VX (5(X) = ¢g(X))

w
I

V)
]

one for each source element s in Ag, where ¢ is a query over G. Given source
database C, a database B for G satisfies M wrt C if for each s € S:

¢ C gbgB (sound source)

€ = gbgB (exact source)

The mapping /M and the source database C do not provide direct information about
which data satisfy the global schema. Sources are views, and we have to answer

gueries on the basis of the available data in the views.

LAV — example I

Global schema : movie(Title, Year, Director)
european(Director)
review(T'itle, Critique)

LAV: associated to source relations we have views over the global schema

n(T,Y,D) C {(T,Y,D)|movie(T,Y, D) A european(D) AY > 1960 }
(T, R) C {(T,R)|movie(T,Y, D) Areview(T, R) AN Y > 1990 }

The query { (7, R) | movie('T', 1998, D) A review(T, R) } is processed by
means of an inference mechanism that aims at re-expressing the atoms of the global

schema in terms of atoms at the sources. In this case:

((T,R) | ro(T, R) Ary(T,1998, D) }

Formalization of GAV I

In GAV, the mapping M is constituted by a set of assertions:

—

¢s (sound source) VX (¢s(X) — g(X))
¢s (exactsource) VX (¢s(X) = g(X))

U

g
g

one for each element ¢ in Ag, where ¢g is a query over S. Given source database
C, a database B for G satisfies M wrt C if for each g € G:

gB D gbgc (sound source)

® = &s° (exact source)

Given a source database, M provides direct information about which data satisfy the
elements of the global schema. Relations in G are views, and queries are expressed
over the views. Thus, it seems that we can simply evaluate the query over the data

satisfying the global relations (as if we had a single database at hand).

GAV — example I

Global schema : movie(Title, Year, Director)
european(Director)

review(T'itle, Critique)

GAV: associated to relations in the global schema we have views over the sources

movie(T,Y, D) DO {(T,Y,D)|n(T,Y,D) }
european(D) {(D)|r(T,Y,D)}
review(T', R) DO {(T,R)|r(T,R)}

U

Maurizio Lenzerini 12

GAV — example of query processing I

The query { (7, R) | movie('T’, 1998, D) A review(T', R) } is processed by
means of unfolding, i.e., by expanding the atoms according to their definitions, so as

to come up with source relations. In this case:

movie(T,1998,D) Oreview(T,R)

unfolding

v v

,(7,1998,D) 0O r,(T,R)

GAV and LAV — comparison I

LAV (Information Manifold, DWQ, Picsel)
e Quality depends on how well we have characterized the sources
e High modularity and extensibility (if the global schema is well designed, when a
source changes, only its definition is affected)
e Query processing needs reasoning (query reformulation complex)

GAV: (Carnot, SIMS, Tsimmis, IBIS, Picsel, ...)
e Quality depends on how well we have compiled the sources into the global
schema through the mapping
e \Whenever a source changes or a new one is added, the global schema needs to
be reconsidered
e Query processing can be based on some sort of unfolding (query reformulation

looks easier)

For more details, see [Ullman, TCS’00], [Halevy, VLDBJ'01].

Beyond GAV and LAV: GLAV I

In GLAV, the mapping M is constituted by a set of assertions:

—

¢s C ¢g (soundsource) VX (¢s(X) — ¢g(X))
¢s = ¢g (exactsource) VX (¢s(X) = ¢pg(X))

where ¢g is a query over §, and ¢g is a query over G. Given source database C, a

database B that is legal wrt G satisfies M wrt C if for each assertion in M:

gbgB (sound source)

Ps°

0 = ¢ (exact source)

The mapping M does not provide direct information about which data satisfy the
global schema: to answer a query g over G, we have to infer how to use M in order

to access the source database C.

Example of GLAV I

Global schema: Work(Person, Project), Area(Project, Field)

Source 1: HasJob(Person, Field)
Source 2: Teach(Professor, Course), In(Course, Field)
Source 3: Get(Researcher, Grant), For(Grant, Project)

GLAV mapping:

{ (r,)| HasJob(r, f) } C {(rf)|Work(r,p) N Areal(p, f) }
{(r,f)|Teach(r,c) N In(c,f)} C {(r,f)|Work(r,p) N Area(p, f) }
{ (r,p) | Get(r,g) N For(g,p)} < {(r,p)|Work(r,p) }

Maurizio Lenzerini 16

Beyond GLAV: P2P data integration I

In P2P, the global schema does not exist. Constraints (that we can still call G) are

defined over

Ag:AglU”-UAgn

and the mapping M is constituted by a set of assertions (gb‘f@, ¢,’ are queries over

the alphabets As, and A, , respectively): gbfi C gbgj .

A is a distinguished subset of predicates in Ag, called “base predicates” (where
data are). A source database is a database for the base predicates. Given source
database C, a database)V that satisfies Z relative to C is a database for S such

that, for each assertion ¢; C ¢y in M, @YY C o)V,

Queries are now expressed over alphabet ASZ., and the notion of certain answers is

the usual one.

A unified view I

e Alphabet : A = Ag U Ag
e Integrity constraints : constraints G, and mapping M
e Partial database : source database

e Database: data for all symbols in A that are both coherent with the partial

database and satisfy the integrity constraints

e Query answering : computing the tuples that satisfies the query in every

database

Under this view, the difference between LAV, GAV, GLAV, P2P is reflected in the

kinds of integrity constraints that are expressible

Query answering with incomplete information I

e [Reiter '84]: relational setting, databases with incomplete information modeled as

a first order theory

e [Vardi '86]: relational setting, complexity of reasoning in closed world databases

with unknown values
e Several approaches both from the DB and the KR community

e [van der Meyden '98]: survey on logical approaches to incomplete information

Connection to guery containment I

Query containment (under constraints 7)) is the problem of checking whether q?
is contained in ¢5 for every database B (satisfying 7), where ¢, ¢, are queries with

the same arity.

e A source database C can be represented as a conjunction gc of ground literals
over As (e.g., if X is in s©, then the corresponding literal is s(X))

e If g is a query, and t is a tuple, then we denote by g¢ the query obtained by
substituting the free variables of g with t

e The problem of checking whether t e qI’C can be reduced to the problem of

checking whether ¢ is contained in gy under the constraints G U M

The combined complexity of checking certain answers is identical to the complexity
of query containment under constraints, and the data complexity is at most the

complexity of query containment under constraints.

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

Dealing with incompleteness and inconsistency I

We analyze the problem of query answering in different cases, depending on two

parameters:

e Global schema :
- without constraints,

- with constraints

e Mapping :
- GAV or LAV,

- sound or complete

Given a source database C, we call retrieved global database any database for §

that satisfies the mapping wrt C.

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[noconstr, GAV/exact]. example I

Consider Z = (G, S, M), with
Global schema G:
student(Scode, Sname, Scity)

university(Ucode, Uname)
enrolled(Scode, Ucode)
Source schema &: database relations sy, S, S3
Mapping M:
student(X, Y, Z)
university(X, Y)
enrolled (X, W)

((X,Y,2)|s:1(X,Y, Z, W)}
(X Y) [s2(X,Y))
{ (X, W) |ss(X, W) }

Maurizio Lenzerini 25

INT[noconstr, GAV/exact]. example I

U niverSi ty StUdent Enrol | ed
code | name code | name | city Scode | Ucode
AF | bocconi 15 |bill |odlo 12 AF
BN | ucla 12 |anne |florence 16 BN
c 12 | anne | florence | 21 c AF' | bocconi c 12| AF
51 _ 52 53
15| bill oslo 24 BN ucla 16 | BN

Example of source database and corresponding retrieved global database

INT[noconstr, GAV/exact] I

Modd of |

Global schema

Retrieved GDB

Source model

Maurizio Lenzerini 27

INT[noconstr, GAV/exact]. query answering I

e Use M for computing from C the retrieved global database, where each element

g of G satisfies exactly the tuples of C satisfying the ¢ that M associates to ¢
e Since § does not have constraints , the retrieved global database is legal wrt §
e Actually, it is the only database that is legal wrt G, and that satisfies M wrt C

e Thus, we can simply evaluate the query g over the retrieved global database,
which is equivalent to unfolding the query according to /M, in order to obtain a

query on Ag to be evaluated over C

Answering queries to Z means answering queries to a single database.

INT[noconstr, GAV/exact]. example of query answering I

Mapping M:
student(X, Y. 7) = {(X,Y,Z2)|s(X,Y, Z, W)}
university(X, Y) = {(X,Y)|s(X,Y) }
enrolled(X, 1) = { (X, W) |s3(X, W)}
c| 12| anne | florence | 21 - | AF | bocconi o 12 AF
51 59 53
15| bil oslo |24 BN | ucla 16 | BN
Query: { (X)) | student(X,Y, Z), enrolled(X, W) }

Unfolding wrt M: { (X)) | s1(X, Y, Z, V), s3(X, W) }

retrieves the answer {12} from C. A simple unfolding strategy is sufficient in this

context.

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[noconstr, GAV/sound]. example I

University Student Enrolled
code | name code | name| city Scode | Ucode
AF | bocconi 15 | bill |oslo 12 AF
UR | uniroma 12 |anne |florence| |16 BN
c 12 | anne | florence | 21 c AF" | bocconi c 12| AF
51 _ 52 53
15| hill oslo 24 BN ucla 16 | BN

Example of source database and corresponding retrieved global database

INT[noconstr, GAV/sound] I

The GAV mapping assertions have the logical form:
VX ¢s(X) — g(X)

The intersection of all retrieved global databases (which can be computed by letting
each element g of G satisfy exactly the tuples of C satisfiying the ¢ s that M

associates to ¢) still satisfies M wrt C, and therefore, is the only “minimal”
model of 7.

Incompleteness is of special form. For queries without negation, unfolding is

sufficient.

INT[noconstr, GAV/sound] I

Minimal

Model of |
Globa schema 4

| ntersection

of retrieved GDBSs
«

Source model

Maurizio Lenzerini 33

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[noconstr, LAV/sound]: incompleteness I

The LAV mapping assertions have the logical form:
VX s(X) — ¢g(X)

In general, given a source database C there are several solutions of the above
assertions (i.e., different databases that are legal wrt § that satisfies M wrt C).

Incompleteness comes from the mapping. This holds even for the case of simple

queries @g:

P
5
I

{(x)| Ty g(x,y) }
{ (@) | g1(x) V ga() }

W
DO

=
1M

INT[noconstr, LAV/sound] I

Global schema Modelsof |

Source model

Maurizio Lenzerini 36

INT[noconstr, LAV/sound]: dealing with incompleteness I

View-based query processing : Answer a query based on a set of materialized

views, rather than on the raw data in the database.

Relevant problem in

e Data warehousing
e Query optimization

e Providing physical independence

INT[noconstr, LAV/sound]: dealing with incompleteness I

In LAV/sound data integration, the views are the sources . Two approaches to

view-based query processing:

e View-based query rewriting : query processing is divided in two steps

1. re-express the query in terms of a given query language over the alphabet

of Ag

2. evaluate the rewriting over the source database C

e View-based query answering : no limitation is posed on how queries are
processed, and the only goal is to exploit all possible information, in particular the

source database, to compute the certain answers to the query

INT[noconstr, LAV/sound]. connection to query containment I

e If queries in M are conjunctive queries, then we can substitute the query that
M associates to s for every s-literal in ¢, and therefore, checking certain
answers can be reduced to checking pure containment (without

constraints) of two queries in the alphabet .Ag

e The data complexity is at most the complexity of query containment

INT[noconstr, LAV/sound]: some results for query answering I

e Conjunctive queries using conjunctive views [Levy&al. PODS’95]

e Recursive queries (datalog programs) using conjunctive views
[Duschka&Genesereth PODS’'97], [Afrati&al. ICDT99]

e Complexity analysis [Abiteboul&Duschka PODS’98] [Grahne&Mendelzon
ICDT'99]

e Variants of Regular Path Queries [Calvanese&al. ICDE’00, PODS’00]
[Deutsch&Tannen DBPL01], [Calvanese&al. DBPLO01]

INT[noconstr, LAV/sound]: data complexity I

From [Abiteboul&Duschka PODS’98].

Sound sources CQ CQ7£ PQ datalog FOL
CQ PTIME | coNP | PTIME | PTIME | undec.
CQ# PTIME | coNP | PTIME | PTIME | undec.
PQ coNP coNP coNP coNP undec.
datalog cONP | undec. | coNP undec. | undec.
FOL undec. | undec. | undec. | undec. | undec.

INT[noconstr, LAV/sound]: basic technigue I

Consider conjunctive queries and conjunctive views.

r(7T) C {(T) | movie(T,Y, D) A european(D) }

(
o(T,V) C {(T,V)]|movie(T,Y, D) A review(T, V) }

)

)

VI'ri(T) — 3JY3ID movie(T,Y, D) A european(D)
A

VIV (T, V) — 3YID movie(T,Y, D) A review(T, V)
movie(T', f1(T), f2(T)) — n(T)
european(fo(T)) «+ 1 (7T)
movie(T, f4(T, V), fs(T,V)) «— ro(T,V)
review(T,V)) «— r(T,V)

Answering a query means evaluating a goal wrt to this nonrecursive logic program
(PTIME data complexity).

INT[noconstr, LAV/sound]: polynomial intractability I

Given agraph G = (N, F), we define Z = (G, S, M), and source database C:

Vi C Ry

Vi & Iy

Vi C RygVRy VR4V Ry VRgV Ry
W = {(c,a)|a€ N,cg N}

Vi¢ = {(a,d)|a€ N,dg N}

i© = {(a,b),(ba) | (a,b) € E}

Q — Rp-M- Ry
where M describes all mismatched edge pairs (e.g., Rrg - R,p). If GG is 3-colorable, then 4
where M (and Q) is empty, i.e. (¢,d) & Q%€ 1f G is not 3-colorable, then M is nonempty
VB, ie. (c,d) € Q*C.

—> coNP-hard data complexity for positive queries and positive views.

INT[noconstr, LAV/sound]: in coNP I

Consider the case of Datalog queries and positive views.

—

e t is not a certain answer to () wrt Z and C, if and only if there is a database B for

7 such that t & QF, and B satisfies M wrt C
e Because of the form of M

VX (s(X) — dyr1oq(X,y1) V ... V dynan (X, yn))
each tuple in C forces the existence of k tuples in any database that satisfies M
wrt C, where £ is the maximal length of conjuncts in M
e If C has n tuples, then there is a database 3° C B for Z that satisfies M wrt C

with at most n - k tuples. Since () is monotone, t Z QF
e Checking whether BB’ satisfies M wrt C can be done in PTIME wrt the size of 5.

—> coNP data complexity for Datalog queries and positive views.

INT[noconstr, LAV/sound]: the case of RPQ I

We deal with the problem of answering queries to data integration systems of the

form (G, S, M), where

e (simply fixes the labels (alphabet X.) of a semi-structured database
e the sources in S are relational
e the mapping M is of type LAV

® ueries are typical of semi-structured data (variants of regular path queries)

Global semi-structured database

@)
>,
cals
sub | sub cals

sub/ var| sub

calls
Sub/ var sub var sub / var| var
@ O e O O

Maurizio Lenzerini 46

Global semi-structured databases and queries

@)
sub sub
a
cdls
var| sub sub | sub cals
cals
Sub/ var var sub / var| var

O«
@)

Regular Path Query (RPQ) : (sub)* - (sub- (calls U sub))* - var

Maurizio Lenzerini 47

Global semi-structured databases and queries

cdls
sub/ var!| sub sub | sub cals
b

calls
Sub/ var sub var sub / var| var
® O ©o O O

a

2RPQ: (sub™)* - (var U sub)

Maurizio Lenzerini 48

INT[noconstr, LAV/sound]: the case of RPQ I

Given

e 7 =(G,S5, M), where

— G simply fixes the labels (alphabet X) of a semi-structured database
— the sources in S are binary relations
— the mapping M is of type LAV, and associates to each source s a

2RPQ w over X
Yo,y s(z,y) C o —y
e a source database C

e a 2RPQ () over X

e a pair of objects t

we want to determine whether ¢ € Q%€

Query answering: Technique I

e We search for a counterexample tot € Q%€, i.e., a database 3 legal for Z wrt
C such thatt & QB

e Crucial point : it is sufficient to restrict our attention to canonical databases, i.e.,

databases B3 that can be represented by a word wg
$d1W1 d2$d3W2d4$ T $d2m_1wmd2m$

where dy, . .., ds,, are constants in C, w; € X7, and $ acts as a separator

— Use word-automata theoretic techniques!

Maurizio Lenzerini 50

We need techniques for ... I

checking whether a pair of objects satisfies a 2RPQ query in the case of

e a word representing a path
e a word representing semipath

e a word representing a canonical database

Finite-state automata and RPQs I

Q=r-(pUq)-q-¢

51 € 0(80,7), 52 € 0(51,p), S2 € (51, 9),

Automaton for Q
S3 S 5(827 Q)a S3 S 5(537 Q)

The computation for RPQs is captured by finite-state automata.

Maurizio Lenzerini 52

2way Regular Path Queries I

2way Reqgular Path Queries (2RPQ) are expressed by means of finite-state
automata over X' U {p~ | p € ¥'}.

*

r-(pUq)-(p-p)"-q-¢q

Finite-state automata and 2RPQs I

r P q
O »O »O
a\ b C d
Word: rp(q
Query: Q=r-(pUq)-p-p-q-¢

- 5 ; ; - 5 : : e 5 : 7
Automaton for Q 51 (50,7), 2 (51,D), S2 (51,9)

S3 S 5(827p_)7 S4 S 5(33729)7 S5 S 5(347Q)7 S5 S 5(857Q)

State: sg

Transition: s; € d(sq, 7)

Finite-state automata and 2RPQs I

r P q
O »O »O
a\ b C d
Word: rpq
Query: Q=r-(pUq)-p pq-q

- 5 ; ; - 5 : : e 5 : 7
Automaton for Q 51 (50,7), 2 (51,D), S2 (51,9)

S3 S 5(827p_)7 S4 S 5(33729)7 S5 S 5(347Q)7 S5 S 5(857Q)

State: sS4

Transition: sy € 0(s1,p)

Finite-state automata and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpq
Query: Q=r-(pUq)-p -p-q-q

€0 y 1) <) yP), =) . q),
Automaton for Q 71 (50,7, 92 (51,0), 52 (1,9)

S3 S 5(827]7_)7 S4 € 5(337]?)7 S5 S 6(847(])7 S5 S 5(85,Q)

State: so

Transition: none

Finite-state automata and 2RPQs I

r P q
»O »O »O »O
a b C d
Word: rpq
Query: Q=r-(pUq)-p p-q-q

State: So
Transition: none
(a, d) satisfies query (), but the path from a to d is not accepted by the 1NFA

corresponding to (): the computation for 2RPQs is not captured by finite-state

automata .

2way automata (2NFA) I

A 2way automaton A = (F, S, So, p, F) consists of an alphabet 1, a finite set of

states 5, a set of initial states Sg C S, a transition function

p:S XX — 25 x{~1,0,1}

and a set of accepting states ' C S.
Given a 2way automaton A with n states, one can construct a one-way automaton

By with O(2"1°8™) states such that L(B;) = L(A), and a one-way automaton B
with O(2") states such that L(Bsy) = I — L(A).

2way automata and 2RPQs I

Given a 2RPQ E' = (X, 5, 1,9, F') over the alphabet 3, the corresponding 2way

automaton Ag is:
(Xa=2U{S$},S4a =S U{ss}U{s" | se€ S}, I,04,{sr})
where 0 4 is defined as follows:
® (S9,1) € 04(s1,7), for each transition s, € d(s1,7) of
e enter backward mode: (s7,—1) € d4(s,¢),foreachs € Sand { € ¥4
e exit backward mode: (So,0) € d4(s7,7), foreach sy € d(s1,77) of £

® (sf,1) €d4(s,9),foreach s € F.

— w satisfies Fiff w$ € L(Ag).

2way automata and 2RPQs I

r P g

»Q »Q »Q »Q
a\ b C d
P anaas

Q=r-(pUq)-pp-q-q

s1 € 0(80,7), 52 € 0(51,Pp), S2 € (81, 9),

Automaton for Q
S3 S 5(827p_)7 S4 S 5(837]?)7 S5 S 5(847Q)7 S5 S 5(857Q)

(817 1) < 5A(807T)7 (827 1) < 5A(817p)7 (827 1) S 5A(817Q)7
2way automaton 4 (sy,—1) € da(s2,q), (83,0) € 0a(s3, P),

(347 1) S 5A(537p)7 (357 1) < 5A(S47Q)7 (va 1) S 5A(357 $)

Maurizio Lenzerini 60

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p-p-q-q

(317 1) < 5A(807T)7 (827 1) < 5A(817p)7
Automaton for @ ¢ (s57, —1) € da(s2,9), (53,0) € da(sy,p),

(54,1) € 9a(53,p), (85,1) € 04(84,q), (57,1) € 0a(55,3)

State: sg

Transition: (s1,1) € d4(so,7)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p-p-q-q

(317 1) < 5A(807T)7 (827 1) < 5A(817p)7
Automaton for @ ¢ (s57, —1) € da(s2,9), (53,0) € da(sy,p),

(54,1) € 9a(53,p), (85,1) € 04(84,q), (57,1) € 0a(55,3)

State: sy

Transition: (So,1) € d4(s1,p)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p-p-q-q

(317 1) < 5A(807T)7 (827 1) < 5A(817p)7
Automaton for @ ¢ (s57, —1) € da(s2,9), (53,0) € da(sy,p),

(54,1) € 9a(53,p), (85,1) € 04(84,q), (57,1) € 0a(55,3)

State: so

Transition: (s5, —1) € d4(s2,q)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p”-p-q-q

(817 1) < 5A(807T)7 (827 1) < 5A(Sl7p)7
Automaton for Q § (s57, —1) € 6a(s2,q), (53,0) € Sa(si).

(54,1) € 04(83,p), (55.1) € 04(54,9), (57,1) € da(s5,3)

State: 55

Transition: (s3,0) € d4(s5,p)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p-p-q-q

(317 1) < 5A(807T)7 (827 1) < 5A(817p)7
Automaton for @ ¢ (s57, —1) € da(s2,9), (53,0) € da(sy,p),

(54,1) € 9a(53,p), (85,1) € 04(84,q), (57,1) € 0a(55,3)

State: s3

Transition: (s4,1) € d4(s3,p)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpqd
Query: Q=r-(pUq)-p -p-q-q

(317 1) < 5A(807T)7 (827 1) < 5A(817p)7
Automaton for @ ¢ (s57, —1) € da(s2,9), (53,0) € da(sy,p),

(54,1) € 9a(53,p), (85,1) € 04(84,q), (57,1) € 0a(55,3)

State: sy

Transition: (S5, 1) € d4(S4,q)

2NFA and 2RPQs I

r P q
»O »O »O »O
a\ b C d
Word: rpq$
Query: Q=r-(pUq)-p-p-q-q

(51,1) € 04(s0,7), (52,1) € da(51,D),
Automaton for) ¢ (s57, —1) € da(s2,q), (s3,0) € 04(s5,p),

(54,1) € da(s3,p), (55,1) € 04(84,q), (57,1) € 0a(55,9)

State: sy

Transition: (s¢,1) € 04(s5,9)

2NFA and 2RPQs I

r P q
»O »O »O »O
a b C d
Word: rpqd
Query: Q=r-(pUq)-p-p-q-q

State: sy

(a, d) satisfies query (), and the path from a to d is accepted by the 2NFA

corresponding to ()): the computation for 2RPQs is captured by 2way automata

2NFA and view extensions I

Global schema G: rOpOgO0rdp Oq)"

rdg” (eOn-p (p-Uog" ror r-(q0p)

e

Database for (&

2NFA and view extensions I

Database Basaword: Sd, ppds Sdyrdy $dyp doSdsrrdsSdyrqgds$

Q=r-(pUq)-(p~ 1) q ¢

To verify that (d, d3) satisfies () in the above database B, we build A (¢ 4, 45). by
exploiting not only the ability of 2way automata to move on the word both forward and
backward, but also the ability to jump from one position in the word representing a

node to any other position (either preceding or succeeding) representing the same
node.

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 71

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 72

Arunof Ag g, dy)

Word: $dyppds $dirdaSdip dySdsrrds$dargds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 73

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 74

Arunof Ag g, dy)

Word: $dyppds $Sdirda$Sdip dySdsrrds $dargds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 75

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (sg, 1) € da(sg,{), foreach £ € ¥ 4

Maurizio Lenzerini 76

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sg

Transition: (s1,0) € d4(so, d1), s1 initial state for ()

Maurizio Lenzerini 77

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sy

Transition: (s1,1) € d4(s1,dy)

Maurizio Lenzerini 78

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sy

Transition: (s9, 1) € d4(s1, 1), transition coming from)

Maurizio Lenzerini 79

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: so

Transition: ((S2,d2), 1) € d4(S2,ds), search for ds

Maurizio Lenzerini 80

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: (so, ds)

Transition: ((s2,ds), 1) € d4((s2,d2),$), search for ds

Maurizio Lenzerini 81

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: (so, ds)

Transition: ((So,d2), 1) € 04((s2,ds), dy), search for dy

Maurizio Lenzerini 82

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: (so, ds)

Transition: ((S2,d2), 1) € d4((s2,ds), p™), search for ds

Maurizio Lenzerini 83

Arunof Ag g, dy)

Word: $dyppds $SdirdaSdip daSdsrrds $dargds$

Q=r-(pUq)-(p~ 1) qq

State: (so, ds)

Transition: (S2,0) € d4((s2,ds), d2), exit search mode

Maurizio Lenzerini 84

Arunof Ag g, dy)

Word: $dyppds $SdirdaSdip daSdsrrds $dargds$

Q=r-(pUq)-(p~ 1) qq

State: so

Transition: (s5, —1) € d4(s2, ds), backward mode

Maurizio Lenzerini 85

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) q ¢

State: 55

Transition: (s3,0) € d4(s5, p~), transition coming from ()

Maurizio Lenzerini 86

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: s3

Transition: (s4, 1) € d4(s3,p™), transition coming from ()

Maurizio Lenzerini 87

Arunof Ag g, dy)

Word: $dyppds $SdirdaSdip daSdsrrds $dargds$

Q=r-(pUq)-(p~-7)"-q-¢

State: sy

Transition: ((S4,d2), 1) € 04(S4,ds), search for ds

Maurizio Lenzerini 88

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2),1) € 04((s4,d2),3$), search for ds

Maurizio Lenzerini 89

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2), 1) € 04((s4,d2), d3), search for ds

Maurizio Lenzerini 90

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2), 1) € d4((s4,d2), 1), search for d

Maurizio Lenzerini 91

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2), 1) € d4((s4,d2), 1), search for d

Maurizio Lenzerini 92

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2), 1) € 04((s4,d2), d3), search for ds

Maurizio Lenzerini 93

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: ((s4,d2),1) € 04((s4,d2),3$), search for ds

Maurizio Lenzerini 94

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: (sy4, ds)

Transition: (S4,0) € d4((s4,d>), d2), exit search mode

Maurizio Lenzerini 95

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: sy

Transition: (sS4, 1) € d4(S4, d>)

Maurizio Lenzerini 96

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrdsSdarqgds$

Q=r-(pUq)-(p~ 1) qq

State: sy

Transition: (s5,1) € d4(S4, 1), transition coming from)

Maurizio Lenzerini 97

Arunof Ag g, dy)

Word: Sdyppds $dirdaSdyp doSdsrrdsSdarqgds$

Q=r-(pUq)-(p~-7)"-q-¢

State: sg

Transition: (sg, 1) € d4(s5, q), transition coming from ()

Maurizio Lenzerini 98

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) q ¢

State: sg

Transition: (s7,0) € d4(sg, d3), s7 final state

Maurizio Lenzerini 99

Arunof Ag g, dy)

Word: Sdyppds $dirdeSdyp doSdsrrds$Sdarqgds$

Q=r-(pUq)-(p~ 1) q ¢

State: sy

Transition: (s7,1) € da(s7,ds), sy final state

Maurizio Lenzerini 100

Arunof Ag g, dy)

Word: $dyppds $dirdaSdip dySdsrrds $dargds$

Q=r-(pUq)-(p~ 1) q ¢

State: sy

Transition: (s7,1) € d4(s7,9), s7 final state

Maurizio Lenzerini 101

Arunof Ag g, dy)

Word: $dyppds $dirde$Sdyp da$Sdsrrds $dyrqgds$

Q=r-(pUq)-(p~ 1) q q

State: s~ final state

Word accepted by A(g 4, ds)!

Maurizio Lenzerini 102

Query answering: Technique I

To check whether (¢, d) ¢ ()7¢, we check for nonemptiness of A, that is the

Intersection of

e the one-way automaton A, that accepts words that represent databases, i.e.,
words of the form ($-C-31-C)*-$

e the one-way automata corresponding to the various A<5,L.,a,b) (for each source \S;
and for each pair (a, b) € S¢)

e the one-way automaton corresponding to the complement of A(Q,c,d)

Indeed, any word accepted by such intersection automaton represents a

counterexample to (c, d) € Q*¢.

Query answering: Complexity I

e All two-way automata constructed above are of linear size in the size of (), the

queries associated to S1, . .., Sk, and SY, ..., S¢. Hence, the corresponding

one-way automata would be exponential.

e However, we do not need to construct A explicitly. Instead, we can construct it

on the fly while checking for nonemptiness.

Query answering for 2ZRPQs is PSPACE-complete in combined complexity (as for
RPQs).

Complexity of query answering for 2RPQs: the complete picture I

From [Calvanese&al. PODS’00]:

Assumption on Assumption on Complexity

domain vViews data | expression | combined

all sound coNP coNP coNP

closed all exact coNP coNP coNP

arbitrary coNP coNP coNP
all sound coNP | PSPACE PSPACE
open all exact coNP | PSPACE PSPACE
arbitrary coNP | PSPACE PSPACE

INT[noconstr, LAV/sound]: Connection to rewriting I

Query answering by rewriting:
e GivenZ = (G,S5, M), and given a query () over G, rewrite () into a query,
called rew (@, Z), in the alphabet .45 of the sources
e Evaluate the rewriting 7ew((), Z) over the source database
We are interested in sound rewritings (computing only certain answers, for every
source database C) that are expressed in a given query language, and that are
maximal for the class of queries expressible in such language. Sometimes, we are

Interested in exact rewritings, 1.e., rewritings that are logically equivalent to the query,
modulo M.

But:

e \When does the rewriting compute all certain answers?
e \What do we gain or lose by focusing on a given class of queries?

Perfect rewriting I

Let cert((),Z, C) be the function that, given query (), data integration system Z,

and source database C, computes the certain answers QI’C to Q wrt Z and C.

Define certjo 71(+) to be the function that, with () and Z fixed, given source

database C, computes the certain answers Q%°.

® certjg,z) can be seen as a query on the alphabet As that, given C, returns QI’C
o certig 1) is a (sound) rewriting of) wrt Z
e No sound rewriting exists that is better than cert g 7]

® certig, 7 is called the perfect rewriting of Qwrtl

Properties of the perfect rewriting I

e Can we express the perfect rewriting in a certain query language?

e How does a maximal rewriting for a given class of queries compare with the

perfect rewriting?

— From a semantical point of view

— From a computational point of view

e \Which is the computational complexity of (finding, evaluating) the perfect

rewriting?

The case of conjunctive queries I

LetZ = (Q, S, /\/l> be a LAV/sound data integration system, let () and the queries
in M be CQs, and let ()’ be the union of all maximal rewritings of () for the class
of CQs. Then ([Levy&al. PODS’95], [Duschka&al.97], [Abiteboul&al. PODS’98])

o Q’ Is the maximal rewriting for the class of unions of conjunctive queries (UCQs)
e () isthe perfect rewriting of Q) wrt Z
e () isa PTIME query

e () is an exact rewriting (equivalent to () for each database BB of 7), if an exact

rewriting exists

Does this “ideal situation” carry on to cases where () and M allow for union?

Unions of path queries (UPQs) I

Very simple query language (called UPQ) defined as follows:

Q — P | Q1UQs
P — R‘Plopg

R denotes a binary database relation , PP denotes a path query , which is a

chaining of database relations, and () denotes a union of path queries

UPQs are a simple form of

e Unions of conjunctive queries

e Regular path queries

View-based guery processing for UPQs I

View-based query answering for UPQs is coNP-complete in data complexity
[Calvanese&al. ICDE’00].

In other words, cert(Q,Z,C), with () and Z fixed, is a coNP-complete function.

= The perfect rewriting cert| 77 is a coNP-complete query .

For query languages that include UPQs the perfect rewriting is coNP-hard — we do

not have the ideal situation we had for conjunctive queries.

Problem: Isolate those UPQs () and Z for which the perfect rewriting certig,z) is a
PTIME function (assuming P#NP) [Calvanese&al. LICS’00].

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[noconstr, LAV/exact]. inconsistency I

The LAV mapping assertions have the logical form:

V% s(%) = 06(%)

In general, given a source database C, there may be no solution of the above

assertions (i.e., no database that is legal wrt G and that satisfies M wrt C).

Example:

NV
) =

/N /N
SRS
N——" N——"
1l
~—
VR /N
S

N——" N——"
o

/N /N
S

N—" N——"

with 5;¢ = {1}, and s,° = {2}.

INT[noconstr, LAV/exact] I

Global schema Modelsof | | Global schema

|

Mapping
Sources Source model Sources
|ncompl eteness |nconsi stency

Maurizio Lenzerini 114

INT[noconstr, LAV/exact]. some results for qguery answering I

e Complexity analysis (sound, complete, exact) [Abiteboul&Duschka PODS’98]
[Grahne&Mendelzon ICDT’99]

e Variants of Regular Path Queries [Calvanese&al. ICDE’00, PODS’00]

INT[noconstr, LAV/exact]. data complexity I

From [Abiteboul&Duschka PODS’98]:

Sound sources CQ CQ7'é PQ datalog FOL
CQ PTIME | coNP | PTIME | PTIME | undec.
CQ7‘é PTIME | coNP | PTIME | PTIME | undec.
PQ coNP coNP coNP coNP undec.
datalog coONP | undec. | coNP undec. | undec.
FOL undec. | undec. | undec. | undec. | undec.
Exact sources CQ CQ7"é PQ datalog FOL
CQ coNP coNP coNP coNP undec.
CQ7é coNP coNP coNP coNP undec.
PQ coNP coNP coNP coNP undec.
datalog undec. | undec. | undec. | undec. | undec.
FOL undec. | undec. | undec. | undec. | undec.

INT[noconstr, LAV/exact]. polynomial intractability I

Given a graph G = (N, F), we define Z = (G, S, M), and source database C:

Vi = {(X)]|color(X,Y)}
Vo = {(Y)]|color(X,Y)}
Vs = {(X)Y)]edge(X,Y) }
Vi¢ = N

Vo¢ = {red, green, blue }
V¢ = E

Q «— {(0)]edge(X,Y)Acolor(X,Z) A color(Y,Z) }
QI’C is true if and only if (5 is not 3-colorable.

—> coNP-hard data complexity for conjunctive queries and views.

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[constr, GAV/exact]. inconsistency I

Given one source database C, there is only one database for G that satisfies the
mapping wrt C. If this is not legal wrt G, then the system is inconsistent (Z has no

model), otherwise, the case is similar to INT[noconstr, GAV/exact].

University Student Enrolled
code | name code | name | city Scode | Ucode
AF | bocconi 15 bill o090 12 AF
BN | ucla 15 |anne |florence| |16 BN
c 15 | anne | florence | 21 c AF" | bocconi c 12| AF
51 _ 52 53
15| bill oslo 24 BN ucla 16 | BN

INT[constr, GAV/exact] I

Models of |

Globa schema Globa schema

| |

Mapping TRetrieved GDB * Mapping

Sources Source model Sources

Inconsistency

Maurizio Lenzerini 120

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[constr, GAV/sound]: incompleteness I

Let us consider a system with a global schema with constraints, and with a GAV

mapping /M with sound sources, whose assertions have the form

g D ¢s with the meaning Vx (¢s(x) — ¢(x))

Since § does have constraints , we cannot simply limit our attention to one
database of the integration system (as we did for INT[noconstr, GAV/exact] and

INT[noconstr, GAV/sound]).

INT[constr, GAV/sound] I

Models of |

Globa schema Globa schema

[| Retrieved GDBs {

/
/ N ! I /
| i / \ ! |
\ /
| ! / \ ! /
Y 1 / \ 1 | !
\ | ,1 / N ! | /
\ | 1 // \ [} ! /|
\ 1 1 U
\ | 1 /7 \
\ [. by
\ [v L
\ ! / // \ Il ! /
A S
NN N\
NN, A
Y ALy
Ay 1
Ly v
? ?

| ncompl eteness |nconsistency

Maurizio Lenzerini 123

INT[constr, GAV/sound]: example I

student(Scode, Sname, Scity), key{Scode}

Global schema G:

university(Ucode, Uname), key{ Ucode}
enrolled(Scode, Ucode), key{Scode, Ucode}

enrolled|Scode] C student|Scode]
enrolled| Ucode| C university| Ucode]

Sources S: database relations s1, s9, S3

Mapping M:

U

{(X,Y,2)|s1(X,Y, Z, W) }
university {(X,)Y) |s2(X,Y) }
enrolled O { (X, W) |s3(X, W)}

student

U

Maurizio Lenzerini 124

Constraints in GAV/sound: example I

UniverSi ty StUdent Enro' | ed
code | name code | name | city Scode | Ucode
AF | bocconi 15 |bill |oslo 12 AF
BN | ucla 12 |anne | florence 16 BN
16 ? ?
T 16 16
c 12 | anne | florence | 21 c AF' | bocconi c 12| AF
51 _ 52 53
15| bill oslo 24 BN | ucla 16 | BN

Example of source database and corresponding retrieved global database

Constraints in GAV/sound: example I

Source database C:

12 | anne | florence | 21 AF' | bocconi 12| AF
15| hill oslo 24 BN ucla 16 | BN

s$(16, BN) implies enrolled®(16, BN), forall B € sem®(I).

Due to the integrity constraints in the global schema, 16 is the code of some
student inall B € sem®(Z).

Since C says nothing about the name and the city of the student with code 16, we
must accept as legal for Z wrt C all virtual global databases that differ in such

attributes.

INT[constr, GAV/sound]: unfolding is not sufficient I

Mapping M:
student O {(X,Y,2)|s1(X,Y,Z, W)}
university O { (X,Y) |so(X,Y) }
enrolled O { (X, W) |s3(X, W) }
c| 12 | anne | florence | 21 -| AF' | bocconi |12 AF
51 52 53
15| hill oslo | 24 BN | ucla 16 | BN
Query: { (X)) | student(X,Y, Z), enrolled(X, W) }

Unfolding wrt M: { (X)) | s1(X, Y, Z, V), s3(X, W) }

retrieves only the answer {12} from C, although {12, 16} is the correct answer. The

simple unfolding strategy is not sufficient in our context.

INT[constr, GAV/sound]: special case I

We assume that only key and foreign key constraints are in G, and M does not
violate any key constraint of G (see later), and we associate to § a logic program g,
as follows.

e For each g in G we have a rule in Pg of the form:
g/(Xla <o 7Xn) — g(X17 <o 7Xn>
e [or each foreign key constraint

91[A] C QQ[B]

in G where A and B are sets of attributes, we have a rule in P of the form (the

fi’s are fresh Skolem functions):

g/Q(Xl, C .. 7Xh7f1(X17 .. 7Xh)7 .. -;fn—h(Xla c . 7Xh)) —
g’l(Xl,. .. 7Xh7- .. ,Xm)

INT[constr, GAV/sound]: special case I

Techniques for processing a conjunctive query ¢ posed to Z = <g, S, /\/l>:

e We construct Pg from G

e We partially evaluate P wrt ¢, and we obtain another query eajpg(q), called the

expansion of ¢ wrt the constraints of

e We unfold expg(q) wrt M, and obtain a query un fa(cxpg(q)) over the

sources

e We evaluate un fr(expg(q)) over the source database C

expg(q) can be of exponential size wrt G, but the whole process has polynomial

time complexity wrt the size of C.

INT[constr, GAV/sound]: example I

Suppose we have Z = (G, S, M), with G:

person(Pcode, Age, CityOfBirth)
student(.Scode, University)

city(Name, Major)

key(person) = {Pcode}
key(student) = {Scode}
key(city) = {Name}
person| CityOfBirth] C city|Name]
city| Major] C person|PCode]
student|SCode] C person|PCode]

Maurizio Lenzerini 130

INT[constr, GAV/sound]. example I

The logic program P is

person’ (X, Y,
student’ (X,
X,

city'(
city' (X, f1(X
person’ (Y, fo(Y), f3(Y

Z
Y
Y
)
)
person’ (X, f4(X), f5(X)

)
)
)
)
)
)

Consider the query

(X

written as the rule

q(X)

1T 11 171

person(X,Y, Z)
student(X,Y)
city(X,Y)
person’ (Y, Z, X)
city’ (X, Y)
student’ (X, Y")

) | person(X,Y, 7Z) }

«— person’(X,Y, Z)

INT[constr, GAV/sound]. example I

persan’ (X,Y,2)

LN

personX,Y,Z) student’(X,W, city’(W,,X)

_—

studert(X,W,) city(W,,X)

expg(q) is

{ (X)) | person(X,Y, Z) V student(X, W) Vcity(Z, X) }

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[constr, LAV/sound] I

Models of |

Globa schema Globa schema

[| Retrieved GDBs {

/
/ 1 /
\ /
\ | I ,/ \ “ ! /
\ |] / \ \] /
\ : ’I / \\ | l! /
\ | 1 / \ |] /]
\ | 1 ’ \\ | 1 /
\]] / \ Vo //
\ [N
\\ [// \ [/
N A . |l i
N NN
N ALy
Ay N2
Ay N
Al v
Tv ﬁ

|ncompl eteness |nconsistency

Maurizio Lenzerini 134

INT[constr, LAV/sound] I

e With functional dependencies [Duschka’97]
e With full dependencies [Duschka’97]
e With inclusion dependencies [Gryz'97]

e \With Description Logics integrity constraints [Calvanese&al. AAAI'00]

Incompleteness and inconsistency I

Constraints Type of Incomple- | Inconsi-
in g mapping teness stency

no GAV/exact no no

no GAV/sound yes/no no

no LAV/sound yes no

no LAV/exact yes yes

yes GAV/exact no yes

yes GAV/sound yes yes

yes LAV/sound yes yes

yes LAV/exact yes yes

INT[constr, LAV/exact] I

Global schemal’ " © “\jodels |Global schema

Globa schema

|

|

M N : Vo M N M in
apping ": /Retrieved /, apping apping
' GDBs \ {
Sources Source modes Sources Sources
| ncompl eteness Inconsistency Inconsistency

Maurizio Lenzerini 137

INT[constr, LAV/exact] I

e With Description Logics integrity constraints [Calvanese&al. AAAI'00]

e Largely unexplored problem

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

INT[constr, GAV/sound]: Dealing with inconsistency I

When for data integration system Z = (G, S, M) and source database C, we have

sem® (Z) = 0, the first-order setting described above is not adequate .

e [Subrahmanian ACM-TODS'94]
e [Grant&al. IEEE-TKDE'95]

e [Dung CooplS’'96]

e [Lin&al. JICIS98]

e [Yan&al. CooplS’'99]

e [Arenas&al. PODS’99]

e [Greco&al. LPAR’00]

e many approaches to KB revision and KB/DB update

Beyond first-order logic: example I

= {Pcode}

player| Pteam

team| Tleader

key (player
key (team

)
)

]
]

Nl

1M

{Tcode}

team| T'code]

player| Pcode].

player O {(X,Y,2)|s1(X,Y,Z, W)}
team 2 {(X,Y,Z)|s20X,Y,Z)Vs3(X,Y,Z)}
9 | Batistuta | RM | 31 c RM Roma 8
S5
10 | Rivaldo | BC | 29 BC' | Barcelona | 10
Sgi RM | Roma | 9

Beyond first-order logic: a proposal I

Given

e 7 =(G,S, M), with a GAV/sound mapping
M={{r2V, ..., 7, 2V,} and

e source database C for S,
we would like to focus on those databases for Z that

1. satisfy G (constraints in G are rigid), and

2. approximate as much as possible the satisfaction of the mapping M wrt C

(assertions in M are soft).

Beyond first-order logic: a proposal I

We define an ordering between the global databases for Z as follows. If 3; and s
are two databases that satisfy G, we say that B; is better than B, wrt Z and C,
denoted as B; >>§ B, if there exists an assertion ; 2 V; in M such that

- (7 NVE) D (177 NVE), and

- (PPN VE) D (PN VE) forallr; ~oy V;in M with j 5 .

Intuitively, 3, has fewer deletions than By wrt the retrieved global database (see
[Fagin&al. PODS’83]), and since the mapping is sound, this means that B is closer
than B35 to the retrieved global database. In other words, /5, approximates the sound

mapping better than 5.

Example I

Consider Z = (G, S, M), with

e § containing relation r(x, y) with key x,
e S containing relations s1(x, y) and so(x, y)

o M={r 2 {(z,y)|s1(z,y) Vsa(z,y) } }

and consider the source database C = { sy(a, d), s1(b,d), s2(a,e) }, so that the
retrieved global database is { 7 (a,d), r(b,d) , r(a,e) }

We have that
e {r(a,d), r(b,d)} >t {r(a,d)}, {r(a,e), r(b,d)}>%{r(a,e)}
e {r(a,d), r(b,d) } and { r(a,e) } are incomparable

e {r(a,e), r(b,d), r(c,e) }and { r(a,e), r(b,d) } are incomparable

Beyond first-order logic: a proposal I

>>§ IS a partial order.

A database B that satisfy G satisfies the mapping M with respect to C if B is

maximal wrt >>Z, i.e., for no other global database 13’ that satisfies G, we have that
B >t B:

sem®(Z) ={ B | Bisadatabase that satisfies G, and such that
—3B’ such that B’ satisfies G and B’ > B}

The notion of legal database for Z with respect to C, and the notion of certain answer

remain the same, given the new definition of satisfaction of mapping.

Beyond first-order logic: special case of INT[constr, GAV/sound] I

We assume that only key and foreign key constraints are in §. Given
= (G, S, M), and source database C, we define the DATALOG ™ program
P(Z,C) obtained by adding to the set of facts C the following set of rules:

e foreach g 2 {(X) | body,(X,¥1)V ---V body, (X,¥m)} in M, the rules:
9c(X) « body, (X, Y1) ... go(X) « body,,(X,Y,,)

e for each relation g € G, the rules

g(X,Y) — go(X,Y), not gX,Y)

9(X,Y) — oX,2), Y #7Z

ing(X,Y), X is the key of g
- Y = 7. means that there exists i such that Y; A

Beyond first-order logic: a proposal I

The above rules force each stable model 7" of P(Z, C) to be such that, for each g in
g, gT IS @ maximal subset of the tuples from the retrieved global database that are

consistent with the key constraint for g.

o ¢ € ¢*C under the new semantics if and only if t € g for each stable model T'
of the DATALOG ™ program P(Z,C) U {expg(q)}

e A stable model of a DATALOG " program 11 is any set o of ground atoms that
coincides with the unique minimal Herbrand model of the DATALOG progam 11,
where 11, is obtained from 11 by deleting every rule that has a negative literal

— B with B € o, and all negative literals in the bodies of the remaining rules
e The problem of deciding whether ¢t & qI’C IS In cONP wrt data complexity

e coNP-complete

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

Reasoning on queries and views in data integration I

Traditional query containment not adequate.

Global schema : movie(Title, Year, Director)
review(Title, Critique)

Mapping :
n(T,Y,D) {(T,Y,D) | movie(T,Y, D) ANY > 1960 }
(T, R) C {(T,R)|review(T,R) NR > 8}

1M

Queries: Q1 : { (7T, R)|movie(T,1998, D) A review(T, R) }
Q2: {(T,R)|movie(T,1998, D) A review(T, R) A R > 8 }

()1 is not contained in () in the traditional sense, but is contained in (), relative to Z.

Maurizio Lenzerini 149

Relative containment I

[Millstein&al. PODS’00] Given data integration system Z = (G, S, M), a query Q);
is said to be contained in query Qs relative to Z (written ()1 C1 ()») if, for every
source database C, the set of certain answers to (); wrt Z and C is contained in the

set of certain answers to (Jo wrt Z and C, i.e., if

VC, cert(QQ1,Z,C) C cert(Qs,Z,C)

For LAV/sound systems with conjunctive queries in the mapping, deciding relative

containment of two conjunctive queries is Hg—complete [Millstein&al. PODS’00].

| ossless views I

Given LAV data integration system Z = (G, S, M), and query @), Z is said to be
lossless wrt () if, for every global database B for Z and for every source database C
such that B is legal for Z wrt C, we have that Q® = Q*°.

fZ = (G,S, M) is lossless wrt (), then answering () through the sources of Z

(views) is the same as answering () by accessing the global database.

Note the difference with checking whether the maximally contained rewriting of () wrt

to Z is equivalent to ().

Comparing the expressive power of sets of views I

A set of views V' is p-contained in another set of views 11/ if all queries that are

answerable by V" are also answerable by W [Li&al. ICDT'01].

A query is answerable by a set of views V' if there is an equivalent rewriting of ()

using V.

Given LAV data integration systems Z; = (G, S1, M1) and Zy = (G, Sy, M), T4
is p-contained in Zs if, for each query (), cert|g,z;] equivalent to () implies

certig 1, equivalent to ().

Outline I

Formal framework for data integration
Approaches to data integration

Query answering in different approaches
Dealing with inconsistency

Reasoning on queries in data integration

Conclusions

Conclusions I

Many open problems, including

e P2P data integration

e Several interesting classes of integrity constraints

e Global schema expressed in terms of semi-structured data (with constraints)
e Dealing with inconsistencies, data cleaning

e How to go beyond the “unique domain assumption”

e Limitations in accessing the sources

e How to incorporate the notion of data quality (source reliability, accuracy, etc.)
e More on reasoning on queries and views

e Optimization

Acknowledgements I

Special thanks to

e Andrea Cali

e Diego Calvanese

e Giuseppe De Giacomo
e Domenico Lembo

e Riccardo Rosati

e Moshe Y. Vardi

Maurizio Lenzerini 155

