
Information integration

Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”

Universit à di Roma “La Sapienza”

Tutorial at IJCAI 2003

Acapulco, Mexico – August 2003

Peer-based architecture for information integration

P1

Operations:
- Answer(Q, Pi)
- Materialize(Pi)

Local mapping

P2

P5

P3

P4

Peer schema

Local source

External source

P2P mapping

Peer

Maurizio Lenzerini 1

Special case 1: Mediator-based data integration

• One peer

• No external sources

• Queries over the peer schema

Global schema

Sources

Query Answer(Q)

Maurizio Lenzerini 2

Special case 2: Data exchange

• One peer

• No external sources

• Materialization

Target

Source

Materialize

Maurizio Lenzerini 3

Special case 3: P2P data integration

• Several peers

• Peer with local and external sources

• Queries over one peer

P1

Answer(Q)

P2

P5

P3

P4

Maurizio Lenzerini 4

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 5

Data integration

Source 1 Source 2

Global schema

Mapping

Query

R1 C1 D1 T1R1 C1 D1 T1

c1 d1 t1c1 d1 t1

c2 d2 t2c2 d2 t2

Source schema Source schema

Maurizio Lenzerini 6

Main problems in data integration

1. How to construct the global schema

2. (Automatic) source wrapping

3. How to discover mappings between the sources and the global schema

4. Limitations in the mechanisms for accessing the sources

5. Data extraction, cleaning and reconciliation

6. How to process updates expressed on the global schema, and updates

expressed on the sources

7. The modeling problem: How to model the mappings between the sources and

the global schema

8. The querying problem: How to answer queries expressed on the global schema

9. Query optimization

Maurizio Lenzerini 7

Formal framework for data integration

A data integration system I is a triple 〈G,S,M〉, where

• G is the global schema

The global schema is a logical theory over an alphabetAG

• S is the source schema

The source schema is constituted simply by an alphabetAS disjoint fromAG

• M is the mapping between S and G

Different approaches to the specification of mapping

Maurizio Lenzerini 8

Semantics of a data integration system

Which are the databases that satisfy I , i.e., which are the logical models of I?

The databases that satisfy I are logical interpretations forAG (called global

databases). We refer only to databases over a fixed infinite domain Γ of constants.

Let C be a source database over Γ (also called source model), fixing the extension

of the predicates ofAS (thus modeling the data present in the sources).

The set of models of (i.e., databases forAG that satisfy) I relative to C is:

semC(I) = { B | B is a G-model (i.e., a global database that is legal wrt G)
and is anM-model wrt C (i.e., satisfiesM wrt C) }

What it means to satisfyM wrt C depends on the nature of the mappingM.

Maurizio Lenzerini 9

Semantics of queries to I

A query q of arity n is a formula with n free variables.

IfD is a database, then qD denotes the extension of q inD (i.e., the set of n-tuples

that are valuations in Γ for the free variables of q that make q true inD).

If q is a query of arity n posed to a data integration system I (i.e., a formula overAG

with n free variables), then the set of certain answers to q wrt I and C is

cert(q, I, C) = {(c1, . . . , cn) ∈ qB | ∀B ∈ semC(I)}.

Note: query answering is logical implication.

Note: complexity will be mainly measured wrt the size of the source database C, and

will refer to the problem of deciding whether ~c ∈ cert(q, I, C), for a given ~c.

Maurizio Lenzerini 10

Databases with incomplete information, or Knowledge Bases

• Traditional database: one model of a first-order theory

Query answering means evaluating a formula in the model

• Database with incomplete information, or Knowledge Base: set of models

(specified, for example, as a restricted first-order theory)

Query answering means computing the tuples that satisfy the query in all the

models in the set

There is a strong connection between query answering in data integration and query

answering in databases with incomplete information under constraints (or, query

answering in knowledge bases).

Maurizio Lenzerini 11

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 12

The mapping

How is the mappingM between S and G specified?

• Are the sources defined in terms of the global schema?

Approach called source-centric , or local-as-view , or LAV

• Is the global schema defined in terms of the sources?

Approach called global-schema-centric , or global-as-view , or GAV

• A mixed approach?

Approach called GLAV

Maurizio Lenzerini 13

GAV vs LAV – example

Global schema : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

Source 1 : r1(Title,Year ,Director) since 1960, european directors

Source 2 : r2(Title, Critique) since 1990

Query : Title and critique of movies in 1998

∃D. movie(T , 1998, D) ∧ review(T ,R), written

{ (T, R) | movie(T, 1998, D) ∧ review(T, R) }

Maurizio Lenzerini 14

Formalization of LAV

In LAV (with sound sources), the mappingM is constituted by a set of assertions:

s ; φG

one for each source element s inAS , where φG is a query over G of the arity of s.

Given source database C, a database B for G satisfiesM wrt C if for each s ∈ S :

sC ⊆ φGB

In other words, the assertion means ∀~x (s(~x) → φG(~x)).

The mappingM and the source database C do not provide direct information about

which data satisfy the global schema. Sources are views, and we have to answer

queries on the basis of the available data in the views.

Maurizio Lenzerini 15

LAV – example

Global schema : movie(Title,Year ,Director)
european(Director)
review(Title,Critique)

LAV: associated to source relations we have views over the global schema

r1(T, Y, D) ; { (T, Y,D) | movie(T, Y, D) ∧ european(D) ∧ Y ≥ 1960 }

r2(T, R) ; { (T,R) | movie(T, Y,D) ∧ review(T, R) ∧ Y ≥ 1990 }

The query { (T, R) | movie(T, 1998, D) ∧ review(T, R) } is processed by

means of an inference mechanism that aims at re-expressing the atoms of the global

schema in terms of atoms at the sources. In this case:

{ (T, R) | r2(T, R) ∧ r1(T, 1998, D) }

Maurizio Lenzerini 16

Formalization of GAV

In GAV (with sound sources), the mappingM is constituted by a set of assertions:

g ; φS

one for each element g inAG , where φS is a query over S of the arity of g.

Given source database C, a database B for G satisfiesM wrt C if for each g ∈ G:

gB ⊇ φSC

In other words, the assertion means ∀~x (φS(~x) → g(~x)).

Given a source database,M provides direct information about which data satisfy the

elements of the global schema. Relations in G are views, and queries are expressed

over the views. Thus, it seems that we can simply evaluate the query over the data

satisfying the global relations (as if we had a single database at hand).

Maurizio Lenzerini 17

GAV – example

Global schema : movie(Title,Year ,Director)

european(Director)

review(Title,Critique)

GAV: associated to relations in the global schema we have views over the sources

movie(T, Y, D) ; { (T, Y, D) | r1(T, Y, D) }

european(D) ; { (D) | r1(T, Y, D) }

review(T,R) ; { (T, R) | r2(T, R) }

Maurizio Lenzerini 18

GAV – example of query processing

The query { (T, R) | movie(T, 1998, D) ∧ review(T, R) } is processed by

means of unfolding, i.e., by expanding each atom according to its associated

definition inM, so as to come up with source relations. In this case:

movie(T,1998,D) ∧ review(T,R)

unfolding

r1(T,1998,D) ∧ r2(T,R)

Maurizio Lenzerini 19

GAV and LAV – comparison

LAV : (Information Manifold, DWQ, Picsel)

• Quality depends on how well we have characterized the sources

• High modularity and extensibility (if the global schema is well designed, when a

source changes, only its definition is affected)

• Query processing needs reasoning (query reformulation complex)

GAV: (Carnot, SIMS, Tsimmis, IBIS, Picsel, Momis, DisAtDis, . . .)

• Quality depends on how well we have compiled the sources into the global

schema through the mapping

• Whenever a source changes or a new one is added, the global schema needs to

be reconsidered

• Query processing can be based on some sort of unfolding (query reformulation

looks easier)

For more details, see [Ullman TCS’00], [Halevy VLDBJ’01], [Lenzerini PODS’02].

Maurizio Lenzerini 20

Beyond GAV and LAV: GLAV

In GLAV (with sound sources), the mappingM is constituted by a set of assertions:

φS ; φG

where φS is a query over S , and φG is a query over G of the arity φS .

Given source database C, a database B that is legal wrt G satisfiesM wrt C if for

each assertion inM:

φS
C ⊆ φGB

In other words, the assertion means ∀~x (φS(~x) → φG(~x)).

As for LAV, the mappingM does not provide direct information about which data

satisfy the global schema: to answer a query q over G, we have to infer how to use

M in order to access the source database C.
Maurizio Lenzerini 21

Example of GLAV

Global schema: Work(Person, Project), Area(Project, F ield)

Source 1: HasJob(Person, F ield)

Source 2: Teach(Professor, Course), In(Course, F ield)

Source 3: Get(Researcher,Grant), For(Grant, Project)

GLAV mapping:

{ (r, f) |HasJob(r, f) } ; { (r, f) |Work(r, p) ∧ Area(p, f) }

{ (r, f) | Teach(r, c) ∧ In(c, f) } ; { (r, f) |Work(r, p) ∧ Area(p, f) }

{ (r, p) |Get(r, g) ∧ For(g, p) } ; { (r, p) |Work(r, p) }

Maurizio Lenzerini 22

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 23

Query answering in different approaches

The problem of query answering comes in different forms, depending on several

parameters:

• Global schema

- without constraints (i.e., empty theory)

- with constraints

• Mapping

- GAV

- LAV

• Queries

- user queries

- queries in the mapping

Maurizio Lenzerini 24

Two observations

• Unless otherwise specified, we consider conjunctive queries (or, unions

thereof) as both user queries and queries in the mapping. A conjunctive query

has the form

{ (~x) | ∃~y p1(~x, ~y) ∧ · · · ∧ pm(~x, ~y) }

• Given a source database C, we call retrieved global database , denotedM(C),

the global database obtained by “applying” the queries in the mapping, and

“transferring” to the elements of G the corresponding retrieved tuples.

Maurizio Lenzerini 25

Incompleteness and inconsistency

Query answering heavily depends upon whether incompleteness/inconsistency

shows up.

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes /no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini 26

Incompleteness and inconsistency

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes /no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini 27

INT[noconstr, GAV]: example

Consider I = 〈G,S,M〉, with

Global schema G:

student(code, name, city)

university(code, name)

enrolled(Scode,Ucode)

Source schema S : relations s1(X,Y,W,Z), s2(X,Y), s3(X,Y)

Mapping M:

student(X, Y, Z) ; { (X, Y, Z) | s1(X,Y, Z,W) }
university(X,Y) ; { (X, Y) | s2(X, Y) }
enrolled(X, W) ; { (X, W) | s3(X, W) }

Maurizio Lenzerini 28

INT[noconstr, GAV]: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode
enrolled

AF12

BN16

UcodeScode

AF12

BN16

UcodeScode

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

Example of source database C and corresponding retrieved global databaseM(C)

Maurizio Lenzerini 29

INT[noconstr, GAV]: minimal model

GAV mapping assertions g ; φS have the logical form:

∀~x φS(~x) → g(~x)

where φS is a conjunctive query, and g is an element of G.

In general, given a source database C there are several databases that are legal wrt

G that satisfiesM wrt C.

However, it is easy to see thatM(C) is the intersection of all such databases, and

therefore, is the only “minimal” model of I .

Maurizio Lenzerini 30

INT[noconstr, GAV]

Sources

Mapping

Global schema

One retrieved global
database M(C)

Source model

One minimal
model of I

=

Maurizio Lenzerini 31

INT[noconstr, GAV]: query answering

• If q is a conjunctive query, then~t ∈ cert(q, I, C) if and only if~t ∈ qM(C)

• If q is query over G, then the unfolding of q wrtM, unfM(q), is the query over S
obtained from q by substituting every symbol g in q with the query φS thatM
associates to g

• It can be shown that evaluating a query q overM(C) is equivalent to evaluating

unfM(q) over C. It follows that, if q is a conjunctive query, then

~t ∈ cert(q, I, C) if and only if~t ∈unfM(q)C

Unfolding is therefore sufficient

• (Data) complexity of query answering is polynomial (|M(C)| is polynomial wrt

|C|)

Maurizio Lenzerini 32

INT[noconstr, GAV]: example

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

university

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode

{ x | student(15,x,y) }

unfolding

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
{ x | s1(15, x, y, z) }

Maurizio Lenzerini 33

INT[noconstr, GAV]: more expressive queries?

• More expressive queries in the mapping?

– Same results hold if we use any computable query in the mapping

• More expressive user queries?

– Same results hold if we use Datalog queries as user queries

– Same results hold if we use union of conjunctive queries with inequalities as

user queries

Maurizio Lenzerini 34

INT[noconstr, GAV]: another view

Let B1 and B2 be two global databases with values in Γ∪ Var.

• A homomorphism h : B1 → B2 is a mapping from (Γ ∪ Var(B1)) to (Γ ∪
Var(B2)) such that

1. h(c) = c, for every c ∈ Γ
2. for every fact Ri(t) of B1, we have that Ri(h(t)) is a fact in B2 (where, if

t = (a1, . . . , an), then h(t) = (h(a1), . . . , h(an))

• B1 is homomorphically equivalent to B2 if there is a homomorphism

h : B1 → B2 and a homomorphism h′ : B2 → B1

Let I = 〈G,S,M〉 be a data integration system. If C is a source database, then a

universal solution for I relative to C is a model J of I relative to C such that for every

model J ′ of I relative to C, there exists a homomorphism h : J → J ′ (see

[Fagin&al. ICDT’03]).
Maurizio Lenzerini 35

INT[noconstr, GAV]: another view

• Homomorphism preserves satisfaction of conjunctive queries: if there exists a

homomorphism h : J → J ′, and q is a conjunctive query, then~t ∈ qJ implies

~t ∈ qJ ′

• Let I = 〈G,S,M〉 be a GAV data integration system without constraints in the

global schema. If C is a source database, thenM(C) is the minimal universal

solution for I relative to C

• We derive again the following results

– if q is a conjunctive query, then~t ∈ cert(q, I, C) if and only if~t ∈ qM(C)

– complexity of query answering is polynomial

Maurizio Lenzerini 36

Incompleteness and inconsistency

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes /no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini 37

INT[noconstr, GLAV]: example

Consider I = 〈G,S,M〉, with

Global schema G:

student(code, name, city)

enrolled(Scode,Ucode)

Source schema S : relation s1(X, Y, W,Z)

Mapping M:

{ (X, Y, Z) | s1(X,Y, Z,W)} ; { (X,Y, Z) | student(X, Y, Z)

∧ enrolled(X, W) }

Maurizio Lenzerini 38

INT[noconstr, GLAV]: example

{ (X, Y, Z) | s1(X, Y, Z, W)} ; { (X, Y, Z) | student(X,Y, Z) ∧ enrolled(X, W) }

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

enrolled

x15

y12

UcodeScode

x15

y12

UcodeScode

florence

oslo 24bill15

21anne12 florence

oslo 24bill15

21anne12s1

�

Example of source database C and corresponding retrieved global databaseM(C)
Maurizio Lenzerini 39

INT[noconstr, GLAV]: example

{ (X, Y, Z) | s1(X, Y, Z, W)} ; { (X, Y, Z) | student(X,Y, Z) ∧ enrolled(X, W) }

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

enrolled

x15

x12

UcodeScode

x15

x12

UcodeScode

florence

oslo 24bill15

21anne12 florence

oslo 24bill15

21anne12s1

�

Example of source database C and corresponding retrieved global databaseM(C)
Maurizio Lenzerini 40

INT[noconstr, GLAV]: incompleteness

GLAV mapping assertions φS ; φG have the logical form:

∀~x φS(~x) → ∃~yφG(~x, ~y)

where φS and φG are conjunctions of atoms.

In general, given a source database C there are several solutions for a set of

assertions of the above form (i.e., different databases that are legal wrt G that

satisfiesM wrt C): incompleteness comes from the mapping .

This holds even for the case of very simple queries φG :

s1(x) ; { (x) | ∃y g(x, y) }

Maurizio Lenzerini 41

INT[noconstr, GLAV]: canonical retrieved global database

What is a retrieved global database in this case?

We build what we call the canonical retrieved global database for I relative to C,

denotedM(C)↓, as follows:

• let all predicates be empty inM(C)↓
• for each mapping assertion φS ; φG inM

– for each tuple~t ∈ φCS such that~t 6∈ φM(C)↓
G , add~t to φM(C)↓

G by inventing

fresh variables (Skolem terms) in order to satisfy the existentially quantified

variables in φG

There is a unique (up to variable renaming) canonical retrieved global database for I
relative to C, that can be computed in polynomial time wrt the size of C. M(C)↓
obviously satisfies G, and is also called the canonical model of I relative to C.

Maurizio Lenzerini 42

INT[noconstr, GLAV]: example of canonical model

{ (X, Y, Z) | s1(X, Y, Z, W)} ; { (X, Y, Z) | student(X,Y, Z) ∧ enrolled(X,W) }

student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

enrolled

x15

y12

UcodeScode

x15

y12

UcodeScode

florence

oslo 24bill15

21anne12 florence

oslo 24bill15

21anne12s1

�

Example of source database C and corresponding canonical modelM(C)↓
Maurizio Lenzerini 43

INT[noconstr, GLAV]: universal solution

Sources

Mapping

Global schema

Canonical Retrieved GDB M(C)↓

Source model

Canonical model of I
= = =

Maurizio Lenzerini 44

INT[noconstr, GLAV]: universal solution

Let I = 〈G,S,M〉 be a GLAV data integration system without constraints in the

global schema. If C is a source database, thenM(C)↓ is a universal solution for I
relative to C (follows from [Fagin&al. ICDT’03]).

It follows that:

• if q is a conjunctive query, then~t ∈ cert(q, I, C) if and only if~t ∈ qM(C)↓

• complexity of query answering is polynomial

Maurizio Lenzerini 45

INT[noconstr, GLAV]: algorithms

• Inverse rules [Duschka&Genesereth PODS’97]

• Bucket algorithm [Levy&al. AAAI’96]

• MiniCon algorithm [Pottinger&Levy VLDB’00]

Other works on LAV:

• Conjunctive queries using conjunctive views [Levy&al. PODS’95]

• Recursive queries (datalog programs) using conjunctive views

[Duschka&Genesereth PODS’97], [Afrati&al. ICDT’99]

• Conjunctive queries with arithmetic comparison [Afrati&al. PODS’01]

• Complexity analysis [Abiteboul&Duschka PODS’98] [Grahne&Mendelzon

ICDT’99]

• Variants of Regular Path Queries [Calvanese&al. ICDE’00, PODS’00]

[Deutsch&Tannen DBPL’01], [Calvanese&al. DBPL’01]

Maurizio Lenzerini 46

INT[noconstr, GLAV]: basic technique

From [Duschka&Genesereth PODS’97]:

r1(T) ; { (T) | movie(T, Y, D) ∧ european(D) }

r2(T, V) ; { (T, V) | movie(T, Y, D) ∧ review(T, V) }
∀T r1(T) → ∃Y ∃D movie(T, Y, D) ∧ european(D)

∀T ∀V r2(T, V) → ∃Y ∃D movie(T, Y, D) ∧ review(T, V)

movie(T, f1(T), f2(T)) ← r1(T)

european(f2(T)) ← r1(T)

movie(T, f4(T, V), f5(T, V)) ← r2(T, V)

review(T, V) ← r2(T, V)

• Answering a query means evaluating a goal wrt to this nonrecursive logic

program (that can be transformed into a union of conjunctive query)

• PTIME data complexity

Maurizio Lenzerini 47

INT[noconstr, GLAV]: more expressive queries?

• More expressive source queries in the mapping?

– Same results hold if we use any computable query as source query in the

mapping assertions

• More expressive queries over the global schema in the mapping?

– Already positive queries lead to intractability

• More expressive user queries?

– Same results hold if we use Datalog queries as user queries

– Even the simplest form of negation (inequalities) leads to intractability

Maurizio Lenzerini 48

INT[noconstr, GLAV]: data complexity

From [Abiteboul&Duschka PODS’98]:

Sound sources CQ CQ6= PQ datalog FOL

CQ PTIME coNP PTIME PTIME undec.

CQ6= PTIME coNP PTIME PTIME undec.

PQ coNP coNP coNP coNP undec.

datalog coNP undec. coNP undec. undec.

FOL undec. undec. undec. undec. undec.

Maurizio Lenzerini 49

INT[noconstr, GLAV]: intractability for positive queries and views

From [Calvanese&al. ICDE’00], given a graph G = (N,E), we define

I = 〈G,S,M〉 and source database C, with S = {Vb, Vf , Ve}, and

G = {Rb, Rf , Rrg, Rgr, Rrb, Rbr, Rgb, Rbg}

M :

Vb ; Rb

Vf ; Rf

Ve ; Rrg ∨Rgr ∨Rrb ∨Rbr ∨Rgb ∨Rbg

C :

Vb
C = {(c, a) | a ∈ N, c 6∈ N}

Vf
C = {(a, d) | a ∈ N, d 6∈ N}

Ve
C = {(a, b), (b, a) | (a, b) ∈ E}

Query Q : { (X, Z) | Rb(X, Y) ∧M(Y, W) ∧Rf (W,Z)}
where M describes all mismatched edge pairs (e.g., {(X, Z) |Rrg(X, Y)∧Rrb(Y, Z)}).

• If G is 3-colorable, then ∃B where M (and Q) is empty, i.e. (c, d) 6∈ cert(Q, I, C)
• If G is not 3-colorable, then M is nonempty ∀B, i.e. (c, d) ∈ cert(Q, I, C)

=⇒ coNP-hard data complexity for positive queries and positive views.

Maurizio Lenzerini 50

INT[noconstr, GLAV]: in coNP for positive queries and views

In the case of positive queries and positive views:

• ~t 6∈ cert(Q, I, C) if and only if there is a database B for I such that~t 6∈ QB,

and B satisfiesM wrt C
• Because of the form ofM

∀~x (φS(~x) → ∃ ~y1α1(~x, ~y1) ∨ . . . ∨ ∃ ~yhαh(~x, ~yh))
each tuple in C forces the existence of k tuples in any database that satisfiesM
wrt C, where k is the maximal length of conjuncts inM

• If C has n tuples, then there is a database B′ ⊆ B for I that satisfiesM wrt C
with at most n · k tuples. Since Q is monotone,~t 6∈ QB′

• Checking whether B′ satisfiesM wrt C, and checking whether~t 6∈ QB′ can be

done in PTIME wrt the size of B′

=⇒ coNP data complexity for positive queries and positive views.

Maurizio Lenzerini 51

INT[noconstr, GLAV]: conjunctive user queries with inequalities

Consider the following I = 〈G,S,M〉 and the following query Q (from [Fagin&al.

ICDT’03]):

M : s(X, Y) ; { (X, Y) | T (X, Z) ∧ T (Z, Y) }

C : { s(a, a) }

Q : { () | T (X, Y) ∧ X 6= Y) }

• J1 = {T (a, a)} is a solution, and QJ1 = false
• if J is a universal solution, then both T (a, X) and T (X, a) are in J , with

X 6= a (otherwise T (a, a) would be true in every solution)

=⇒ cert(Q, I, C) = false, but QJ = true for every universal solution J for I
relative to C

=⇒ the notion of universal solution is not the right tool

Maurizio Lenzerini 52

INT[noconstr, GLAV]: conjunctive user queries with inequalities

• still polynomial with one inequalities

• coNP algorithm: guess equalities on variables in the canonical retrieved global

database

• coNP-hard with six inequalities (see [Abiteboul&Duschka PODS’98])

• open problem for a number of inequalities between two and five

=⇒ coNP-complete for conjunctive user queries with inequalities.

Maurizio Lenzerini 53

INT[noconstr, GLAV]: connection to view-based query processing

View-based query processing : Answer a query based on a set of materialized

views, rather than on the raw data in the database.

In GLAV data integration, the views are the sources .

Two approaches to view-based query processing:

• View-based query rewriting : query processing is divided in two steps

1. re-express the query in terms of a given query language over the alphabet

ofAS
2. evaluate the rewriting over the source database C

• View-based query answering : no limitation is posed on how queries are

processed, and the only goal is to exploit all possible information, in particular the

source database, to compute the certain answers to the query

Maurizio Lenzerini 54

INT[noconstr, LAV]: connection to rewriting

Query answering by rewriting:

• Given I = 〈G,S,M〉, and given a query Q over G, rewrite Q into a query,

called rew(Q, I), in the alphabetAS of the sources

• Evaluate the rewriting rew(Q, I) over the source database

We are interested in sound rewritings (i.e., computing only tuples in cert(Q, I, C)
for every source database C) that are expressed in a given query language, and that

are maximal for the class of queries expressible in such language. Sometimes, we

are interested in exact rewritings, i.e., rewritings that are logically equivalent to the

query, moduloM.

But :

• When does the rewriting compute all certain answers?

• What do we gain or loose by focusing on a given class of queries?

Maurizio Lenzerini 55

Perfect rewriting

Define cert [Q,I](·) to be the function that, with Q and I fixed, given source

database C, computes the certain answers cert(Q, I, C).

• cert [Q,I] can be seen as a query on the alphabetAS

• cert [Q,I] is a (sound) rewriting of Q wrt I

• No sound rewriting exists that is better than cert [Q,I]

• cert [Q,I] is called the perfect rewriting of Q wrt I

Maurizio Lenzerini 56

Properties of the perfect rewriting

• Can we express the perfect rewriting in a certain query language?

• How does a maximal rewriting for a given class of queries compare with the

perfect rewriting?

– From a semantical point of view

– From a computational point of view

• Which is the computational complexity of (finding, evaluating) the perfect

rewriting?

Maurizio Lenzerini 57

The case of conjunctive queries

Let I = 〈G,S,M〉 be a GLAV data integration system, let Q and the queries inM
be conjunctive queries (CQs), and let Q′ be the union of all maximal rewritings of

Q for the class of CQs . Then ([Levy&al. PODS’95], [Abiteboul&Duschka PODS’98]

• Q′ is the maximal rewriting for the class of unions of conjunctive queries (UCQs)

• Q′ is the perfect rewriting of Q wrt I

• Q′ is a PTIME query

• Q′ is an exact rewriting (equivalent to Q for each database B of I), if an exact

rewriting exists

Does this “ideal situation” carry on to cases where Q and M allow for union?

Maurizio Lenzerini 58

View-based query processing for UPQs

As we saw before, view-based query answering is coNP-complete in data complexity

when we add (a very simple form of) union to the query language used to express

queries over the global schema in the mapping [Calvanese&al. ICDE’00].

In other words, in this case cert(Q, I, C), with Q and I fixed, is a coNP-complete

function, and therefore the perfect rewriting cert [Q,I] is a coNP-complete query .

If in the mapping we use a query language with union, then the perfect rewriting is

coNP-hard — we do not have the ideal situation we had for conjunctive queries.

Maurizio Lenzerini 59

Incompleteness and inconsistency

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes /no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini 60

INT[constr, GAV]: incompleteness and inconsistency

Let us consider a system with a global schema with constraints, and with a GAV

mappingM with sound sources, whose assertions g ; φS have the logical form

∀~x φS(~x) → g(~x)

where φS is a conjunctive query, and g is an element of G.

Basic observation: since G does have constraints , the retrieved global database

may not be legal for G.

Maurizio Lenzerini 61

INT[constr, GAV]: example

Global schema G:

student(Scode, Sname, Scity), key{Scode}

university(Ucode,Uname), key{Ucode}

enrolled(Scode,Ucode), key{Scode,Ucode}

enrolled[Scode] ⊆ student[Scode]

enrolled[Ucode] ⊆ university[Ucode]

Sources S : database relations s1(X,Y, Z), s2(X, Y), s3(X, Y)

Mapping M:
student(X,Y, Z) ; { (X,Y, Z) | s1(X, Y, Z,W) }
university(X, Y) ; { (X,Y) | s2(X,Y) }

enrolled(X, Y) ; { (X,Y) | s3(X,Y) }
Maurizio Lenzerini 62

Constraints in GAV: example

Student

oslobill15

florenceanne12

citynamecode

oslobill15

florenceanne12

citynamecode

University

uclaBN

bocconiAF

namecode

uclaBN

bocconiAF

namecode
Enrolled

AF12

BN16

UcodeScode
AF12

BN16

UcodeScode

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

Example of source database and corresponding retrieved global database

Maurizio Lenzerini 63

Constraints in GAV: example of incompleteness

Source database C:

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

sC3(16, BN) and the mapping imply enrolledB(16, BN), for all B ∈ semC(I).

Due to the integrity constraints in the global schema, 16 is the code of some

student in all B ∈ semC(I).

Since C says nothing about the name and the city of the student with code 16, we

must accept as legal for I wrt C all virtual global databases that differ in such

attributes.

Maurizio Lenzerini 64

INT[constr, GAV]: unfolding is not sufficient

Mapping M:
student(X,Y, Z) ; { (X,Y, Z) | s1(X, Y, Z,W) }
university(X, Y) ; { (X,Y) | s2(X,Y) }

enrolled(X, Y) ; { (X,Y) | s3(X,Y) }

sC1
12 anne florence 21

15 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

Query: { (X) | student(X,Y, Z), enrolled(X,W) }

Unfolding wrtM: { (X) | s1(X, Y, Z, V), s3(X,W) }

retrieves only the answer {12} from C, although {12, 16} is the correct answer. The

simple unfolding strategy is not sufficient in our context.

Most GAV systems use the simple unfolding strategy!
Maurizio Lenzerini 65

Constraints in GAV: example of inconsistency

Source database C:

sC1
12 anne florence 21

12 bill oslo 24
sC2

AF bocconi

BN ucla
sC3

12 AF

16 BN

sC1 imply studentB(12, anne, florence, 21), and studentB(12, bill, oslo, 24), for all B
that satisfies the mapping.

Due to the integrity constraints in the global schema, it follows that there is no

database that satisfies both the mapping and the global schema , i.e.,

semC(I) = ∅.

Maurizio Lenzerini 66

INT[constr, GAV]: incompleteness and inconsistency

Sources

Mapping

Global schema Retrieved
GDB M(C)

Source model

Models of I

Sources

Mapping

Global schema

Incompleteness Inconsistency

Maurizio Lenzerini 67

INT[constr, GAV]: the case of key and foreign key

We consider the case where the global schema contains

• key constraints: every relation has one key constituted by a set of attributes

• foreign key constraints, which are inclusion dependencies of the form

r1[X1, . . . , Xn] ⊆ r2[Y1, . . . , Yn]

where {Y1, . . . , Yn} is a subset of the key of r2

It can be shown that such constraints are sufficient to capture:

• Frame-based languages

• The class definition part of most object-oriented languages (including UML)

• Semantic and conceptual data models (inculding the Extended

Entity-Relationship model)

• Several ontology languages adopted in the research work on Semantic Web

Maurizio Lenzerini 68

INT[constr, GAV]: the case of key and foreign key

Given source database C,

• IfM(C) does violate key constraints, then semC(I) = ∅, and we are done

(see later, for the case where violations are treated in different ways).

• Otherwise, we “chase”M(C) by means of the foreign key constraints G and we

obtain a (possibly infinite) database for G, denoted chaseG(M(C)).

Example of chase: we “apply” the foreign key constraint

enrolled[Scode] ⊆ student[Scode]

to {enrolled(16, BN), student(12, anne, florence)} and we obtain

{enrolled(16, BN)}, student(12, anne, florence), student(16, x, y))}

Maurizio Lenzerini 69

INT[constr, GAV]: special case

Properties of chaseG(M(C)):

• chaseG(M(C)) does not violate key constraints (ifM(C) does violate key

constraints)

• chaseG(M(C)) may be infinite (in particular, when foreign key constraints are

cyclic)

• chaseG(M(C)) represents a universal solution for I and C, i.e., for every

database B ∈ semC(I), there exists a homomorphism from chaseG(M(C))
to B

• ifM(C) does violate key constraints, and q is a conjunctive query, then

~t ∈ cert(q, I, C) if and only if t ∈ qchaseG(M(C))

Maurizio Lenzerini 70

INT[constr, GAV]: special case

Techniques for processing a conjunctive query q posed to I = 〈G,S,M〉:

1. We construct from G a suitable logic program PG
2. We partially evaluate PG wrt q and G, and obtain another

query expG(q), called the expansion of q wrt G

3. We unfold expG(q) wrt M, and obtain a query

unfM(expG(q)) over the sources

4. We evaluate unfM(expG(q)) over the source database C

• Evaluating unfM(expG(q)) over C is equivalent to evaluating q over

chaseG(M(C)), i.e., it computes cert(q, I, C)

• expG(q) can be of exponential size wrt G, but the whole process has polynomial

time complexity wrt the size of C.

Maurizio Lenzerini 71

INT[constr, GAV]: example

Suppose we have I = 〈G,S,M〉, with G:

person(Pcode,Age,CityOfBirth)

student(Scode,University)

city(Name,Major)

key(person) = {Pcode}

key(student) = {Scode}

key(city) = {Name}

person[CityOfBirth] ⊆ city[Name]

city[Major] ⊆ person[PCode]

student[SCode] ⊆ person[PCode]

Maurizio Lenzerini 72

INT[constr, GAV]: example

The logic program PG is

person′(X, Y, Z) ← person(X,Y, Z)

student′(X,Y) ← student(X, Y)

city′(X, Y) ← city(X, Y)

city′(X, f1(X)) ← person′(Y, Z,X)

person′(Y, f2(Y), f3(Y)) ← city′(X, Y)

person′(X, f4(X), f5(X)) ← student′(X, Y)

Consider the query

{ (X) | person(X, Y, Z) }

written as the rule

q(X) ← person′(X, Y, Z)
Maurizio Lenzerini 73

INT[constr, GAV]: example

person’(X,Y,Z)

� �
� �person(X,Y,Z) student’(X,W1) city’(W2,X)

� �
� �student(X,W1)

� �
� �city(W2,X)

expG(q) is

{ (X) | person(X,Y, Z) ∨ student(X, W) ∨ city(Z,X) }

Maurizio Lenzerini 74

INT[constr, GAV]: algorithms and systems

• First algorithms appeared in [Calı̀&al. CAISE’02], [Calı̀&al. InfSysJ’03], and

implemented in the IBIS data integration system (see [Calı̀&al. CAISE’03])

• Technique improved and extended in [Calı̀&al. PODS’03], [Calı̀&al. IJACI’03], in

order to deal with more expressive integrity constraints, and with unions of

conjunctive queries

• New technique implemented in the DisAtDis data integration system (see

http://www.dis.uniroma1.it/˜disatdis)

• The DisAtDis data integration system has been integrated with the MOMIS

schema integration system (see [Bergamaschi& et al 2002]) in the context of the

Sewasie European project

• More expressive queries leads to intractability/undecidability

Maurizio Lenzerini 75

Incompleteness and inconsistency

Constraints in G Type of mapping Incompleteness Inconsistency

no GAV yes /no no

no GLAV yes no

yes GAV yes yes

yes GLAV yes yes

Maurizio Lenzerini 76

INT[constr, GLAV]

Sources

Mapping

Global schema Canonical
Retrieved GDB
M(C)↓

Source model

Models of I

Sources

Mapping

Global schema

Incompleteness Inconsistency

Maurizio Lenzerini 77

INT[constr, GLAV]

• With functional dependencies [Duschka’97]

• With full dependencies [Duschka’97]

• With inclusion dependencies [Gryz’97] (sound but incomplete algorithm)

• With Description Logics integrity constraints [Calvanese&al. AAAI’00]

• With key and inclusion dependencies [Calı̀&al. ’03]

• With acyclic tuple-generating dependencies [Halevy&al. ICDE’03]

• With weakly acyclic tuple-generating dependencies and equality-generating

dependencies [Fagin&al. ICDT’03]

Maurizio Lenzerini 78

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 79

INT[constr, GAV]: Dealing with inconsistency

When for data integration system I = 〈G,S,M〉 and source database C, we have

semC(I) = ∅, the first-order setting described above is not adequate .

• [Subrahmanian ACM-TODS’94]

• [Grant&al. IEEE-TKDE’95]

• [Dung CoopIS’96]

• [Lin&al. JICIS’98]

• [Yan&al. CoopIS’99]

• [Arenas&al. PODS’99]

• [Greco&al. LPAR’00]

• many approaches to KB revision and KB/DB update

Maurizio Lenzerini 80

Inconsistency: example

player(Pcode,Pteam,PAge) team(Tcode,TCity ,Tleader)

key(player) = {Pcode}

key(team) = {Tcode}

player[Pteam] ⊆ team[Tcode]

team[Tleader] ⊆ player[Pcode]

player(X,Y,Z) ; { (X, Y, Z) | s1(X, Y, Z, W) }

team(X,Y,Z) ; { (X, Y, Z) | s2(X, Y, Z) ∨ s3(X, Y, Z) }

Maurizio Lenzerini 81

Inconsistency: example

Source

database C:
sC1 :

9 Batistuta IN 31

10 Rivaldo MI 29
sC2 :

IN Inter 8

MI Milan 10

sC3 : IN Inter 9

player(X,Y,Z) ; { (X, Y, Z) | s1(X,Y, Z, W) }

team(X,Y,Z) ; { (X, Y, Z) | s2(X,Y, Z) ∨ s3(X,Y, Z) }

Retrieved global database:

Player:
9 Batistuta IN

10 Rivaldo MI
Team:

IN Inter 8

MI Milan 10

IN Inter 9

Maurizio Lenzerini 82

Beyond first-order logic: loosely sound semantics

Given

• I = 〈G,S,M〉, with a GAV mappingM = {r1 ; V1, . . . , rn ; Vn},

where each Vi is a union of conjunctive queries

• source database C for S ,

we would like to focus on those databases for I that

1. satisfy G (constraints in G are rigid), and

2. approximate as much as possible the satisfaction of the mappingM wrt C
(assertions inM are soft).

Maurizio Lenzerini 83

Beyond first-order logic: loosely sound semantics

We define an ordering between the global databases for I as follows. If B1 and B2

are two databases that satisfy G, we say that B1 is better than B2 wrt I and C,

denoted as B1 �I
C B2, if there exists an assertion ri ; Vi inM such that

- (ri
B1 ∩ Vi

C) ⊃ (ri
B2 ∩ Vi

C), and

- (rj
B1 ∩ Vj

C) ⊇ (rj
B2 ∩ Vj

C) for all rj ; Vj inM with j 6= i.

Intuitively, B1 has fewer deletions than B2 wrt the retrieved global databaseM(C)
(see [Fagin&al. PODS’83]), and since the mapping is sound, this means that B1 is

closer than B2 to the retrieved global database. In other words, B1 approximates the

sound mapping better than B2.

Maurizio Lenzerini 84

Example

Consider I = 〈G,S,M〉, with

• G containing relation r(x, y) with key x
• S containing relations s1(x, y) and s2(x, y)
• M = { r ; { (x, y) | s1(x, y) ∨ s2(x, y) } }

and consider the source database C = { s1(a, d), s1(b, d), s2(a, e) }, so that the

minimal retrieved global database is { r(a, d), r(b, d) , r(a, e) }

We have that

• { r(a, d), r(b, d) } �I
C { r(a, d) }, { r(a, e), r(b, d) } �I

C { r(a, e) }

• { r(a, d), r(b, d) } and { r(a, e) } are incomparable

• { r(a, e), r(b, d), r(c, e) } and { r(a, e), r(b, d) } are incomparable

Maurizio Lenzerini 85

Beyond first-order logic: loosely sound semantics

�I
C is a partial order.

A database B that satisfy G satisfies the mappingM with respect to C if B is

maximal wrt�I
C , i.e., for no other global database B′ that satisfies G, we have that

B′ �I
C B:

semC(I) = { B | B is a global database that satisfies G, and such that

¬∃B′ such that B′ satisfies G and B′ �I
C B }

The notion of model for I with respect to C, and the notion of certain answer remain

the same, given the new definition of satisfaction of mapping.

Maurizio Lenzerini 86

Loosely sound semantics: the case of INT[constr, GAV]

We assume that only key and foreign key constraints are in G. Given

I = 〈G,S,M〉, and source database C, we define the DATALOG¬ program

P(I, C) obtained by adding to the set of facts C the following set of rules:

• for each g ; {(~x) | body1(~x, ~y1) ∨ · · · ∨ bodym(~x, ~ym)} inM, the

rules:
gC(~X) ← body1(~X, ~Y1) . . . gC(~X) ← bodym(~X, ~Ym)

• for each relation g ∈ G, the rules

g(~X, ~Y) ← gC(~X, ~Y) , not g(~X, ~Y)

g(~X, ~Y) ← g(~X, ~Z) , ~Y 6= ~Z

– in g(~X, ~Y), ~X is the key of g

– ~Y 6= ~Z means that there exists i such that Yi 6= Zi.

Maurizio Lenzerini 87

Loosely sound semantics: the case of INT[constr, GAV]

The above rules force each stable model T of P(I, C) to be such that, for each g in

G, gT is a maximal subset of the tuples from the minimal retrieved global database

that are consistent with the key constraint for g.

• t ∈ cert(q, I, C) under the new semantics if and only if t ∈ qT for each stable

model T of the DATALOG¬ program P(I, C) ∪ {expG(q)}

• Determining t ∈ cert(q, I, C) under the new semantics is coNP-complete wrt

data complexity

• Technique implemented using theDLV system (Infomix European project)

Note: a stable model of a DATALOG¬ program Π is any set σ of ground atoms that coincides with the

unique minimal Herbrand model of the DATALOG progam Πσ , where Πσ is obtained from Π by

deleting every rule that has a negative literal ¬B with B ∈ σ, and all negative literals in the bodies of

the remaining rules

Maurizio Lenzerini 88

Summary of results from [Calı̀&al. PODS’03]

KDs IDs sound loosely-sound

no GEN PTIME PTIME

yes no PTIME coNP

yes FK PTIME coNP

yes FK,UN PTIME coNP

yes NKC PTIME coNP

yes 1KC undecidable undecidable

yes GEN undecidable undecidable

Legenda: FK = foreign key dependencies, GEN = general IDs, UN = unary IDs;

Maurizio Lenzerini 89

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 90

Data exchange

Target

Source

Materialize

Maurizio Lenzerini 91

Formal framework for data exchange

From [Fagin&al. ICDT’03], a data exchange setting E = (S, T, Σst, Σt) consists of

• a source schema S
• a target schema T
• a set Σst of source-to-target dependencies, each one of the form (tuple

generating dependency, tgd)

∀~x (φS(~x) → ∃~yφT (~x, ~y))

with φS(~x) conjunction of atoms over S, and φT (~x, ~y) conjunction of atoms

over T (cfr. GLAV mappings in data integration)

• a set Σt of target dependencies, each one of the form (tgd, or equality generating

dependency)

∀~x (φS(~x) → ∃~yφT (~x, ~y)) or ∀~x (φT (~x) → (x1 = x2))

Maurizio Lenzerini 92

Formal framework for data exchange

The data exchange problem associated with the data exchange setting

E = (S, T , Σst, Σt) is the following:

• given a finite instance C of S (source instance)

• find a finite instance J of T (target instance) such that (I, J) satisfies Σst, and

J satisfies Σt.

Such a J is called a solution for E wrt C, or simply for C. The set of all solutions is

denoted by Sol(C).

Maurizio Lenzerini 93

Example of data exchange

Σst:

{ ∀a∀b∀c (P (a, b, c) → ∃Y ∃Z T (a, Y, Z))
∀a∀b∀c (Q(a, b, c) → ∃X∃U T (X, b, U))
∀a∀b∀c (R(a, b, c) → ∃V ∃W T (V, W, c)) }

C = {P (a0, b1, c1), Q(a2, b0, c2), R(a3, b3, c0)}

Possible solutions:

J = {T (a0, Y0, Z0), T (X0, b0, U0), T (V0,W0, c0)}

J1 = {T (a0, b0, c0)}

J2 = {T (a0, b0, Z1), T (V1,W1, c0)}

Maurizio Lenzerini 94

Data exchange: results

The following results appear in [Fagin&al. ICDT’03]:

• If C is a source instance and J, J ′ are universal solutions for C, then J and J ′

are homomorphically equivalent

• Let C, C ′ be two source instances, J a universal solution for C, and J ′ a

universal solution for C′. Then Sol(C)=Sol(C ′) if and only if J and J ′ are

homomorphically equivalent

• If the tgds in Σt are weakly acyclic (i.e., cycles do not involve existentially

quantified variables), then the existence of a solution for C can be checked in

polynomial time wrt the size of C. Moreover, if a solution for C exists, then a

universal solution for C can be produced in polynomial time wrt the size of C (by

chasing C)

Maurizio Lenzerini 95

Data exchange: materialization and certain answers

• Materialization

It follows that a universal solution for I wrt C is the right structure to materialize

in the target

• Certain answers

Let E = (S, T , Σst, Σt) be a data exchange setting, let Q be a k-ary query

over the target schema T , and let C be a source instance.

The certain answers of Q wrt E and C, denoted cert(Q, E , C), is the set of all

the k-tuples of constants in Const(S) such that, for every solution J for C of the

data exchange problem associated to the above setting, we have that t ∈ QJ

(cfr. certain answers in data integration).

Maurizio Lenzerini 96

Data exchange: query answering

Results from [Fagin&al. ICDT’03]:

• If Q is a union of conjunctive queries, C is a source instance, and J is a universal

solution for C, then cert(Q, E , C) = QJ

• If for every conjunctive query cert(Q, E , C) = QJ , then J is a universal

solution for C

• If the tgds in Σt are weakly acyclic, and Q is a union of conjunctive queries, then

for every source instance C, the set cert(Q, E , C) can be computed in

polynomial time wrt the size of C

Maurizio Lenzerini 97

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 98

P2P data integration

P1

Answer(Q)

P2

P5

P3

P4

Maurizio Lenzerini 99

Formal framework for P2P data integration

The following framework is inspired by [Halevy&al. ICDE’03]:

• A P2P system Π is constituted by a set of peers {P1, . . . , Pn}
• Each peer Pi of Π is constituted by

– a schema Gi (the peer schema)

– a set L of local sources

– a set E of external sources

– a set of local mappings from the sources S = L ∪ E to the peer schema,

each of the form: ∃~zφS(~x,~z) ; ∃~yφG(~x, ~y)
– each P2P mapping is an assertion assigning to each external source E ∈ E

of Pi a query over another peer Pj , each one of the form: E ; ∃~yφj(~x, ~y)

Note that each peer can be conceived as a GLAV data integration system, or as a

data exchange setting.

Maurizio Lenzerini 100

P2P data integration: example

Ag1 Trip(x,y)

Ag2Conn(x,y,p)

t(n,x,y)

Italy Train(n,x,y)

EU EuroTrain(n,c,d,e)

Austria Train(n,x,y,z)France Train(n,x,y)

{(n,x,y) | Train(n,x,y)} {(n,x,y) | Train(n,x,y)} {(n,x,y) | Train(n,x,y,z)}

{(n,x,y) | EuroTrain(n,x,y,z)}
{(n,x,y) | EuroTrain(n,x,y,z)}

s(x,y) v(x,y,p)

{(x,y,z) | Conn(x,y,z)}e(n,x,y) c(x,y,z)

{(x,y) | Trip(x,y)}

{(x,y) | e(n,x,z) ∧ c(z,y,w)}

{(x,y,z) | s(z,y) ∧ t(n,x,z) ∧ v(x,y,p)}

Maurizio Lenzerini 101

Formal framework for P2P data integration

• A local source database C for Π is a database for the set L of all local source

predicates in the various peers of Π

• An external source databaseD for Π is a database for the set E of all external

source predicates in the various peers of Π

• The union of a local source database C for Π and an external source database

D for Π is a database for S = L ∪ E , and is called a source database for Π

• A global database for Π is a database for the union G of all peer schemas of Π
(which are assumed to be pairwise disjoint)

• A global database for Π is said to be legal wrt G if it satisfies all peer schemas

Maurizio Lenzerini 102

Semantics of P2P data integration

Given a local source database C for Π, the set of models of Π relative to C is:

semC(Π) = { B | B is a global database for Π that is legal wrt G, and

∃ an external source databaseD for Π such that

− B satisfies all local mapping assertions wrt C ∪ D
− B satisfies all P2P mapping assertions wrtD }

• B satisfies a local mapping assertion ∃~zφS(~x,~z) ; ∃~yφi(~x, ~y) wrt C ∪ D if

(∃~zφS(~x,~z))C∪D ⊆ ∃(~yφi(~x, ~y))B

• the meaning of B satisfying a P2P mapping assertion wrtD may vary in the

various approaches

The set of certain answers to a query Q posed to a peer P of Π wrt the source

database C is the set cert(QP , Π, C) of tuples that satisfy Q in all the models of Π
relative to C.

Maurizio Lenzerini 103

First order logic semantics of P2P data integration

According to most approaches (see [Halevy&al. ICDE’03], [Bernstein&al. WebDB

’02]), the semantics of P2P mapping assertions in P2P system Π is given in terms of

first order logic (FOL):

Satisfaction of a P2P mapping assertion

Ej ; ∃~yφi(~x, ~y)

of Π by a global database B wrtD means

• satisfaction of the FOL formula

∀~x(∃~yφi(~x, ~y) → Ej(~x))

• which is equivalent to the condition

(∃~yφi(~x, ~y))B ⊆ ED
j

Maurizio Lenzerini 104

First order logic semantics of P2P data integration

In [Calvanese&al. 2003], it is argued that the FOL semantics is not adequate for P2P

data integration, mainly because

• The system is modeled by a flat FOL theory, with no formal separation between

the various peers

• The modular structure of the system is not reflected in the semantics

• Bad computational properties: computing the set of certain answers to a

conjunctive query Q posed to a peer is undecidable, even for simple P2P

systems, i.e., for P2P systems where all peer schemas are empty (see

[Halevy&al. ICDE’03], [Koch FOIKS’02])

• In order to recover decidability, one has to limit the expressive power of P2P

mappings (e.g., acyclicity is assumed in [Halevy&al. ICDE’03])

Maurizio Lenzerini 105

Epistemic semantics for P2P data integration

In [Calvanese&al. 2003], a new semantics is proposed for P2P data integration,

based on epistemic logic

• A P2P mapping Ej ; ∃~yφi(~x, ~y) is interpreted as the formula

∀~x((K ∃~yφi(~x, ~y)) → Ej(~x))

which imposes that only the certain answers to ∃~yφi(~x, ~y) at peer i are

transferred to peer j (peer i communicates to peer j only facts that are certain,

i.e., true in every model of the P2P system)

• The modular structure of the system is now reflected in the semantics (by virtue

of the modal semantics of epistemic logics)

• Good computational properties: for simple P2P systems, computing the set of

certain answers to a conjunctive query Q wrt a local source database C is not

only decidable, but also polynomial time in the size of C, even for cyclic mappings

Maurizio Lenzerini 106

Outline

• Peer-based Distributed Information Systems

• Data integration

– Approaches to data integration

– Query answering in different approaches

– Dealing with inconsistency

• Data exchange

• P2P data integration

• Conclusions

Maurizio Lenzerini 107

Conclusions

Many open problems and issues, including

• More on P2P data integration

• Several interesting classes of integrity constraints in peer schemas

• Global schema (or target schema, or peer schemas) expressed in terms of

semi-structured data (with constraints)

• Dealing with inconsistencies vs. data cleaning

• Going beyond the “unique domain assumption”

• Limitations in accessing the sources

• Exact sources as opposed to sound sources

• How to incorporate the notion of data quality (source reliability, accuracy, etc.)

• Optimization (reasoning on queries and views)

Maurizio Lenzerini 108

Acknowledgements

Special thanks to

• Andrea Calı́

• Diego Calvanese

• Giuseppe De Giacomo

• Domenico Lembo

• Riccardo Rosati

• Moshe Y. Vardi

Maurizio Lenzerini 109

