
Data Management – AA 2013/14 – exam of 21/2/2014

Compito B

Problem 1
A “transaction with single-ending-write” has a single write operation, and such write operation is
the final action of the transaction. Let S be a schedule all of whose transactions are “transactions
with single-ending-write”. Prove or disprove each of the following two properties.

• S is conflict serializable.

• We can insert in S the “commit” operations of the various transactions appearing in S in
such a way that the resulting schedule is ACR.

Solution 1
We disprove that if S is a schedule all of whose transactions are transactions with single-ending-
write, then S is conflict serializable, by showing a counterexample. It is easy to see that the schedule

r1(x) r2(y) w2(x) w1(y)

is a schedule all of whose transactions are transactions with single-ending-write, but is not conflict
serializable, as its precedence graph contains a cycle.

We prove that if S is a schedule all of whose transactions are transactions with single-ending-
write, then we can insert in S the “commit” operations of the various transactions appearing in S
in such a way that the resulting schedule is ACR. Indeed, consider the schedule S ′ obtained from
S by adding, for each write action wi(z), the commit operation ci of transaction Ti just after the
action wi(z). Suppose S ′ is not ACR. Then there is a transaction Ti that reads from Tj, i.e., there
is an action ri(x) reading from wj(x), and ci is not between wj(x) and rj(x). But this contradicts
the fact that ci is just after wi(x). So, we have proved that assuming S ′ is not ACR leads to a
contradiction, implying that S ′ is ACR.

Problem 2
Consider the following schedule

S = r4(x) w3(y) r2(x) w1(z) w4(x) w4(z) r2(y) w1(y)

2.1 Tell whether S is view serializable or not, explaining the a2nswer in detail. If the answer is
yes, then tell if there is a single action that can be added to S in such a way that the resulting
schedule is no longer view serializable. If the answer is no, then tell if there is a single action
that can be deleted from S in such a way that the resulting schedule is view serializable.

2.2 Tell whether S is conflict serializable or not, explaining the answer in detail.

2.3 Tell whether S is accepted by the 2PL scheduler with exclusive and shared locks. If the answer
is yes, then show the schedule obtained from S by adding suitable lock and unlock commands.
If the answer is no, then explain the answer.

2.4 Tell whether S is ACR, whether it is strict, and whether it is rigorous, explaining the answer
in detail.

Solution 2

4.1 S is view-serializable, since the serial schedule T3, T2, T1, T4 is clearly view-equivalent to S,
because it has the same read-from relation and the same final-set as S. There is a single action
that can be added to S in such a way that the resulting schedule is no longer view serializable:
for example, if we add r1(x) at the end of the schedule, then the resulting schedule S ′ is no
longer view serializable, because now T1 reads from T4 (implying that in every serial schedule
view equivalent to S ′, T4 preceeds T1), and in S the final write on z is w4(z) (implying that
in every serial schedule view equivalent to S ′, T1 preceeds T4).

4.2 S is conflict serializable because the precedence graph associated to S is clearly acyclic.



4.3 S is not accepted by the 2PL scheduler with exclusive and shared locks: in order to execute
w4(z), T1 must issue the command u1(z) before w4(z), and because of w1(y), T1 should issue
the command xl1(y) before u1(z); in order to execute r2(y), T2 must issue the command sl2(y),
but this command is is incompatible with sl1(y).

4.4 S is ACR, because T2 reads from T3, but T3 can commit before r2(y). S is not strict,
because T4 writes on T1, but T1 cannot commit before w4(z), since w1(y) appears after w4(z).
Obviously, since S is not strict, S is not rigorous.

Problem 3
Describe in detail the interpolation search algorithm that is used for key-based searching in the
sorted file organization. Under which condition is this algorithm efficient?

Solution 3
See the slides of the course.

Problem 4
Suppose relations R(A,B,C) and S(D,E,F) are stored in 800 pages and 3000 pages, respectively,
each without duplicates. Suppose also that we have 900 buffer frames available in main mem-
ory. Which is the algorithm you would use for computing the set intersection of R and S with a
minimal number of page accesses? And which is the cost of such algorihtm in terms of page accesses?

Solution 4
Since the buffer has 900 frames free, we can use the one-pass algorithm: we read R into 800 buffer
frames, and then we read S one page at a time, and for each tuple, we check whether the tuple is
already in the buffer frames. If no, we ignore the tuple, otherwise, we write the tuple in the page
devoted to the result (when such a page is full, we write it into the result), and we delete the tuple
from the buffer frames. The number of page accesses (as usual, ignoring the pages used to write to
result) is simply 800 + 3000 = 3.800.

Problem 5
Consider the relation TRAVEL(group,year,nation,cost,cities) that stores information about
travels, with the group of people participating in the travel, the year when the travel has taken
place, the nation visited during the travel, the cost of the travel, and the number of people that
participated in the travel. The relation occupies 600.000 pages, each of 1600 KB. We assume that all
fields in every record have the same size of 20 KB, independently of the field type. There is a sparse
B+-tree index on TRAVEL with search key 〈group,year,nation〉, using alternative 2. Consider the
query

select group,nation from TRAVEL;

that asks for the group and the nation of all the travels, and tell which algorithm you would use
for executing the query, and how many page accesses such algorithm needs for computing the answer.

Solution 5
Since the index is sparse, we cannot use the index for answering the query, because we know that we
have only one data entry for each page, and not for each value of the search key in the data records.
Therefore, the only way to compute the result of the query is to use the algorithm for projection
(possibly with duplicates), which is a one-pass algorithm. So, the number of page accesses is 600.000
(as usual, we ignore the cost of writing the result).
Comment:
Just as an observation, let us analyze the case of dense index also. In this case, since each page
has size 1600 KB, and the size of each field in every record is 20 KB, independently of the field
type, we conclude that in every page we have space for 80 values. Since the index uses alternative
2, and every search key value has 3 fields, we know that every data entry has 4 fields (the three
values of the search key, plus the pointer to the data file), and therefore every leaf of the index has



room for 80/4 = 20 data entries. Taking into account the 67% occupancy rule, this means that
every leaf of the index has 13 data entries. Since we are considering the case of dense index, we
have one data entry for each tuple of the relation. How many tuples does the relation have? Since
every tuple occupies 100KB, in every page we 1600/100=16 tuples, and therefore, we have 600.000
* 16 = 9.600.00 tuples in the relation. Now, 9.600.000/13 = 738.461 is the number of leaves of the
tree. Since the query asks for the group and the nation of all the travels, the search key contains
group and nation, and the index is now dense, we could in principle answer the query simply by an
index-only scan. More precisely, we could use the one-pass algorithm computing the projection of
the relation stored in the leaves of the index. However, the cost is 738.461 page accesses (as usual,
we ignore the cost of writing the result), which is worse than just scanning the data file.


