
Data Management – solutions of the exam of 31/01/2013

Problem 1 An extended schedule is a schedule expressed in an extended notation, that allows
the schedule to contain assignment statements involving local variables, and enriched read and
write statements of the form readi(B, x) and writei(B, x), where the statement readi(B, x) means
that transaction i reads the database element B and stores its value in the local variable x, and
the statement writei(B, x) means that transaction i writes the value of the local variable x in the
database element B. Consider the following extended schedule S:

v1 := 0; read1(A,w1); w1 := v1 ∗ w1; read2(A,w2); w2 := w2 − w2; write2(A,w2); write1(A,w1);.

1.1 Tell whether S is serializable or not. Explain the answer in detail.
1.2 Tell whether S is view-serializable or not. Explain the answer in detail.

Solution 1

1.1 We remind the reader that two schedule S1 and S2 on the same transactions are said to be
equivalent if, for each database state s0, the effect of executing S1 starting from s0 is the same
as the effect of executing S2 starting from s0. Also, a schedule S is said to be serializable if
there is a serial schedule on the same transactions that is equivalent to S.

It is easy to see that S is serializable. Indeed, consider the serial schedule S′ where transaction
T1 is followed by transaction T2:

v1 := 0; read1(A,w1); w1 := v1 ∗ w1; write1(A,w1);
read2(A,w2); w2 := w2 − w2; write2(A,w2);

No matter which is the initial state s0 of the database, the effect of the execution of S on s0
is the same as the effect of the execution of S′ on s0. Indeed, after both executions, the value
of A in the database, as well as the value of each local variable is 0.

1.2 S is clearly not view-serializable, because S has an empty “read-from” relation, whereas both
serial schedules T1, T2 and T2, T1 have a non-empty “read-from” relation (in the schedule
T1, T2, read2(A,w2) reads from write1(A,w1), whereas in the schedule T2, T1, read1(A,w1)
reads from write2(A,w2)).

Problem 2 A 1-write schedule is a schedule containing exactly one write action. Give the
definition of view-serializable schedule, and, using only such definition, prove or disprove that
every 1-write schedule is view-serializable.

Solution 2 A schedule is view-serializable if it is view-equivalent to a serial schedule on the same
transactions, where two schedules are view-equivalent if the have the same final-write set, and the
same read-from relation. By using only the above definition, we now prove that every 1-write
schedule is view-serializable.

Let S be a 1-write schedule, and let wi(X) the only write action in S. Now, let S′ be the serial
schedule

Tj1 , Tj2 , . . . , Tjk
, Ti, Th1 , . . . , Thm

where Tj1 , Tj2 , . . . , Tjk
is a sequence (in any order) of all the transactions different from Ti that do

not read from wi(X) in S, and Th1 , . . . , Thm is a sequence (in any order) of all the transactions
reading from wi(X) in S. In other words, S′ contains first all the transactions (in any order) that do
not read from wi(X) in S, then Ti, and then all the transactions (in any order) reading from wi(X)



in S. We now show that S′ is view-equivalent to S. Indeed, since wi(X) is the only write action in
both schedules, it is immediate to verify that the final-write set of S is equal to the final-write set
of S′. Also, since the set of transactions reading from wi(X) in S is exactly the set of transactions
appearing after Ti in S′, it is immediate to verify that the read-from relation of S is equal to the
read-from relation of S′.

Problem 3 Consider the following schedule

S = r1(A) r3(C)w3(B) r2(A)w1(B) r2(C)w3(C) r3(A)w2(D).

3.1 Tell whether S is a 2PL schedule with exclusive and shared locks, explaining the answer in
detail.

3.2 Tell whether S is conflict-serializable or not. If the answer is yes, then show a serial schedule
that is conflict-equivalent to S. If the answer is no, then motivate the answer in detail.

3.2 Tell whether S is strict or not, and whether S is ACR or not, explaining the answer in detail.

Solution 3

3.1 Let us try to add lock and unlock commands to S coherently with the 2PL protocol:

sl1(A) r1(A) sl3(C) r3(C)xl3(B)w3(B) sl2(A) r2(A)

At this point, T3 should release the lock on B, since T1 wants to write on B. If we want
to follow the 2PL protocol, however, T2, before unlocking B, should acquire all the locks it
needs in the future, namely: xl3(C) and sl3(A). If T3 does so, however, then T2 will not be
able to read element C, because T3 would hold the exclusive lock on such element. So, we
conclude that S is not a 2PL schedule.

3.2 If we build the precedence graph associated to S, we immediately observe that it does not
contain any cycle. Indeed, the only edges of the graph are the edge from the node corre-
sponding to transaction T3 to the node correspnding to transaction T1, and the edge from
the node corresponding to transaction T2 to the node corresponding to transaction T3. From
this observation, we can immediately verify that the serial schedule

S′ = r2(A) r2(C)w2(D) r3(C)w3(B)w3(C) r3(A) r1(A)w1(B)

is conflict-equivalent to S.
3.2 S is not strict. Indeed, transaction T1 (with action w1(B)) writes on transaction T3 (action

w3(B)) before the commit of T3 (which cannot occur before the action r3(A)). On the other
hand, S is ACR, because no transaction reads from any other transaction.

Problem 4 Suppose that page P in our Data Base Management System is a page with fixed-length
records containing 100 slots, and suppose we ask for the deletion of the record with rid=〈P, 10〉.
Illustrate the various actions that the system performs in the two cases of packed and unpacked
organization for P , respectively.

Solution 4 We distinguish between the case of packed and unpacked organization.

• In the case of packed organization, the last slot in the page P contains the value M of records
actually stored in the page (in particular, such records are stored in the first M positions of
the page). Since we are deleting the record with rid=〈P, 10〉, we have M ≥ 10. To delete the
record, the system simply does the following: for each 11 ≤ i ≤M , it moves the record that
is currently in position i from position i to position i − 1. Finally, the system changes the
value stored in the last slot from M to M − 1, to reflect the fact that the number of records
stored in the page is decreased by one.



• In the case of unpacked organization, the last slot in the page P contains both the value M
of slots that can be used for the records in the page, and an array of M bits, telling whether
the various slots in the page are occupied or not. Again, since we are deleting the record with
rid=〈P, 10〉, we have surely M ≥ 10. In this case, to delete the record with rid=〈P, 10〉, it is
sufficient to set the bit in position 10 of the array to 0, so as to reflect the fact that the slot
in position 10 is now free.

Problem 5 Consider the relation TENNISCHOOL(code,city,cost,numstud) that stores 200.000
tuples, where each tuple 〈d, t, c, n〉 means that the tennis school d is in city t, has a monthly cost
of c, and has n students. We assume that (i) in the average, for every value v of cost, there are
20 schools whose monthly cost is v, (ii) in the average, for every value w of numstud, there are 10
schools whose number of student is w, (iii) every page in secondary storage has space for 10 records
of the relation TENNISCHOOL, (iv) every attribute and every record id occupies the same space in
the page, and (v) the following are the most important queries on TENNISCHOOL (where Query 1 is
even more important than Query 2):

Query 1 Query 2
select code select code, city
from TENNISCHOOL from TENNISCHOOL
where cost ≥ α and cost ≤ α+ 10 where numstud ≥ β and numstud ≤ β + 2

Tell which is the method for representing the relation TENNISCHOOL you would choose in order
to optimize the computation of the above queries, explaining in detail your answer. Also, tell
how many pages are accessed during the execution of Query 1, and how many pages are accessed
during the execution of Query 2.

Solution 5 Both queries are range queries, and therefore we can think of two B+ tree indexes,
one with search key cost, and the other with search key numstud. The best would be if both
indexes were clustered. However, it is well known that only one index on the same relation can be
clustered. Since the most important query is Query 1, we decide that the index with search key
cost is clustered, so as to provide the best support to Query 1. Therefore, here is the decision on
the method for representing the relation TENNISCHOOL:

• We store the data file in a sorted file with search key cost.

• We define a clustered B+ tree sparse index with search key cost, using alternative 2. The
index is sparse because we do not need to have one data entry for each data record in the
data file; rather, it is sufficient to have one data entry for each value of cost appearing in
the data file.

• We define an unclustered B+ tree dense index with search key numstud, using alternative 2.
Such index is dense, because an unclustered index cannot be sparse.

Let us now see how many pages are accessed during the execution of the two queries, by analyzing
each of them separately.

1. Let us consider Query 1. We first compute the number of leaves in the tree index with search
key cost. Since the relation has 200.000 tuples, and in the average, for every value v of cost,
there are 20 schools whose monthly cost is v, we have 200.000 / 20 = 10.000 different values
of cost that have to be stored in the leaves. Since every page in secondary storage has space
for 10 records of the relation, we know that every page has space for 40 values. Since every
data entry is constituted by 2 values (one value for cost, and one value of the same size for
the record id), we know that every page has space for 20 data entries or index entry. We can
also consider 20 to be the fan-out of the tree, since each index entry has the same structure
of a data entry, being constituted by one value of cost and one pointer (and we are assuming
that the size of such pointer is the same as the size of a record id). Now, the number of



leaves needed to keep the 10.000 data entries is 10.000 / 20 = 500. Taking into account the
67% occupancy property for the leaves, we have that 500 * 1.5 = 750 is the real number of
leaves. This means that we need log20750 = 3 page accesses to get to the leaf with first value
α of the range. Since we need the code attribute in the data file, and we have our data file
stored in a sorted file with search key cost, we now have to go to the data file, and then scan
the data file to find all other qualifying records. How many qualifying records do we have?
We have 10 values of cost to consider in the range, which means 200 schools to retrieve in
the average. Since we have 10 records per page for the relation TENNISCHOOL, this means 20
accesses to the pages of the data file. We then conclude that the number of page accesses
needed for the execution of Query 1 is:

log20750 + 20 = 3 + 20 = 23.

Note that, if we decided to use alternative 1 for the clustered index, then the index would
be dense, and the number of page accesses needed for Query 1 would be as follows. The
number of leaf pages needed to store the relation would be 200.000 / 10 = 20.000. Taking
into account the 67% occupancy property for the leaves, we have that 20.000 * 1.5 = 30.000
would be the real number of leaves. This means that we would need log2030.000 = 4 page
accesses to get to the leaf with first value α of the range. How many further page accesses
do we need for accessing the qualifying records? The qualifying records are 200, and, if the
pages were full, then we would need to access 20 pages for the qualifying records. Taking
into account the 67% occupancy property for the leaves, we conclude that we would need to
access 30 pages for further leaf pages. Thus, in this case, the number of page accesses needed
for the execution of Query 1 would be:

log2030.000 + 30 = 4 + 30 = 34.

2. Let us consider Query 2. We first compute the number of leaves in the tree index with search
key numstud. Since the relation has 200.000 tuples, and the index is dense, we have 200.000
data entries that have to be stored in the leaves. Since every page in secondary storage has
space for 10 records of the relation, we know that every page has space for 40 values. Since
every data entry is constituted by 2 values (one value for numstud, and one value of the same
size for the record id), we know that every page has space for 20 data entries or index entry.
We can also consider 20 to be the fan-out of the tree, since each index entry has the same
structure of a data entry, being constituted by one value of numstud and one pointer (and we
are assuming that the size of such pointer is the same as the size of a record id). Now, the
number of leaves needed to keep the 200.000 data entries is 200.000 / 20 = 10.000. Taking
into account the 67% occupancy property for the leaves, we have that 10.000 * 1.5 = 15.000
is the real number of leaves. This means that we need log2015.000 = 4 page accesses to get
to the leaf with first value β of the range. There are 3 values of numstud in the range to
consider, and for each such value of numstud, we have 10 schools with that value. This means
that we need to analyze 30 data entries, which means that we need to access 3 more leaf
pages in the worst case. Finally, since we need the attributes code and city in the data file,
and we have our data file stored in a sorted file with search key cost, we now have to go to
the data file for each of the data entry. Since the index is unclustered, this means that we
need 30 more page accesses to the data file.

We then conclude that the number of page accesses needed for the execution of Query 2 is:

log2015.000 + 3 + 30 = 4 + 3 + 30 = 37.


