
Data Management (A.A. 2024/25) – exam A of 05/06/2025

Solutions

Problem 1 Consider a scheduler D that behaves as follows when processing an input schedule S: D lets S
proceed, dynamically building the precedence graph P (S) by adding nodes and edges when needed and never
deleting nodes or edges, and acting only whenever it processes the commit action of a transaction Ti. When
processing such action, it executes the commit action if Ti is not involved in any cycle in P (S), otherwise it aborts
and rollbacks Ti. Let S be any complete schedule on transactions T1, . . . , Tn, where the last action of each Ti

is the commit action ci, let S ′ be the schedule produced in output by D when processing S, and let S ′′ be the
schedule obtained from S ′ by ignoring the actions of the transactions aborted by D.

1.1 Prove or disprove that S is conflict serializable if and only if S = S ′′.

1.2 Prove or disprove that S ′′ is recoverable, and in case you disproved that S ′′ is recoverable, tell how you
would modify D in order to ensure recoverability of S ′′.

Solution 1

1.1 Proving the statement “if S is conflict serializable, then S = S ′′” is easy. If S is conflict serializable, then
P (S) is acyclic and therefore when D processes the input schedule S and encounters the commit action of
a transaction Ti, it will never abort and rollback Ti. It follows that the output of D will coincide with its
input, i.e., S = S ′′.

We now prove that if S is not conflict serializable, then S ̸= S ′′. If S is not conflict serializable, then P (S)
has at least one cycle γ. Let Ti be a transaction involved in the cycle γ. Since the last action of every
transaction in S is the commit action, when D processes ci, it aborts and rollbacks Ti, and therefore the
actions of Ti are not part of S ′′. We conclude that S ̸= S ′′.

1.2 We disprove that S ′′ is recoverable by simply considering the non-recoverable schedule S

w1(x) r2(x) c2 c1

and noticing that, obviously, in this case S = S ′′, which implies that S ′′ is not recoverable. To ensure that
S is recoverable, the scheduler D could be modified as follows: when processing the commit action ci of
transaction Ti, D executes such commit action if and only if Ti is not involved in any cycle in P (S) and all
the transactions from which Ti has read have already committed, otherwise it aborts and rollbacks Ti.

Problem 2 Consider the following schedule S:

r1(x) w2(x) w2(y) r3(x) w4(x) w2(z) w3(y)

2.1 Is S a 2PL schedule with both shared and exclusive locks? Motivate your answers in detail.

2.2 Is S a strict schedule? Motivate your answers in detail.

2.3 Describe the behavior of the timestamp-based scheduler when processing S, assuming that, initially, for
each element α of the database, we have rts(α)=wts(α)=wts-c(α)=0, and cb(α)=true, and assuming that
the subscript of each action denotes the timestamp of the transaction executing such action.

Solution 2

2.1 The following lock-extended schedule shows that S is a 2PL schedule with both shared and exclusive locks:

sl1(x) r1(x) u1(x) xl2(x) w2(x) xl2(z) u2(x) sl3(x) r3(x)

u2(y) xl3(y) u3(x) xl4(x) w4(x) u4(x) w2(z) u2(z) w3(y) u3(y)

2.2 The schedule S is not strict, because transaction T3 reads x from T2 before the commit of T2.



2.3 Here is the behavior of the timestamp-based scheduler when processing S (assuming that the commit
operations come after all the actions of S and follow the order of timestamp):

r1(x): read ok, rts(x) = 1

w2(x): write ok, wts(x) = 2, cb(x) = false

w2(y): write ok, wts(y) = 2, cb(y) = false

r3(x): read ok, but T3 put in a waiting queue because cb(x) = false

w4(x): write ok, but T4 put in a waiting queue because cb(x) = false

w2(z): write ok, wts(z) = 2, cb(z) = false

w3(y): not executed, since T3 is suspended

c1: ok

c2: ok, cb(x) = cb(y) = cb(z) = true

r3(x): read ok, rts(x) = 3

w4(x): write ok, wts(x) = 4, cb(x) = false

w3(y): write ok, wts(y) = 3, cb(y) = false

c3: ok, cb(y) = true

c4: ok, cb(x) = true

Problem 3 Consider the relations S(A,B) and R(B,C,D,E), where (i) both have B as key, (ii) S is stored in
a heap with 60 pages (each page with 40 tuples) with an associated hash index whose search key is B, (iii) R is
stored in a heap with 900 pages (each page with 20 tuples) and (iv) the buffer has 32 frames available. If your
goal is to compute the natural join (equi-join on B) between R and S as efficiently as possible in terms of number
of page accesses, which algorithm would you choose among:

3.1 block-nested loop,
3.2 multi-pass based on sorting,
3.3 index-based.

Explain your answer in detail so as to convince that you choice is the right one.

Solution 3
We simply compute the cost of each of the three algorithms, and then choose the most efficient one.

3.1 Block-nested loop. The smaller relation is S. So, the cost is B(S) +B(R)× ⌈B(S)/(32− 2)⌉ = 1.860.
3.2 Multi-pass based on sorting. We must determine the required number of passes, which is obviously greater

than 1. Since 32 × 31 = 992 and 992 > 900 + 60, two passes suffice. Notice that the problem of too large
fragments does not occur, because the join is on the keys of the relations. Thus, the cost is 3 × (B(S)+B(R))
= 2.880.

3.3 Index-based. Since the number T (R) of tuples of R is 900 × 20 = 18.000 and since we assume 1 to be the cost
of searching for a value of B in R using the hash index, the cost is B(R)+T (R)×1 = 900+18.000×1 = 18.900.

We conclude that we should choose the block-nested loop algorithm.

Problem 4 Consider the relation MEETING(code,topic,venue,city,date), with 800.000 tuples stored in a
sorted file with search key code (which is also the key of the relation), and with an associated sorted index with
search key venue. We know that no more than 300 meetings are held in the same venue, that every attribute and
pointer in our system occupies 10 Bytes, and that the size of each page in our system is 1.000 Bytes. Consider
the following operations (1) given a venue, compute the code of all meetings held in that venue, together with the
corresponding topic; (2) insert a new meeting. For each of the two operations, tell which is the worst-case cost of
its execution in terms of number of page accesses.

Solution 4



4.1 To compute, given a venue, the code of all meetings held in that venue, together with the corresponding
topic, we obviously use the index to find the first appropriate data entry and all othe relevant data entries,
for each of them following the pointer to the data file to retrieve the corresponding value of the attribute
topic. In order to evaluate the cost, we need to compute the number of pages in the sorted index file.
Since the data file is sorted on code and the search key of the sorted index is venue, the index is clearly
unclustering and therefore dense. This means that the index has as many data entries as the number of
tuples in the data file. Now, we have to compute the number of data entries that fit in one page. Since
every attribute and pointer in our system occupies 10 Bytes, each data entry occupies 20 Bytes and since
the size of each page is 1.000 Bytes, we conclude that we have space for 1.000/20 = 50 data entries in each
page and that we have to store 800.000/50 = 16.000 pages in the index file. Also, since we have to retrieve
300 data entries (in the worst case), we know that we need to access 300/50 = 6 pages of the index, besides
the first one retrieved with binary search, and one page of the data file for each data entry, in the worst
case (i.e., 300 pages of the data file).

The cost of the first operation is therefore (log216.000 + 1 is the cost of locating the first appropriate data
entry by means of binary search): log216.000 + 1 + 6 + 300 = 14 + 1 + 6 + 300 = 321.

4.2 For the second operation, we evaluate the cost under the assumption that we do not use the overflow pages,
rather, we keep the files sortted by compacting the pages. When we insert a new meeting, we insert both a
new data entry in the index, and a new tuple in the data file, but we have to do so by to keeping both the
index file and the data file sorted. The worst case for both insertion is the one where we have to move all
the records and we need to allocate a new page. So, for the insertion into the index file the cost is 16.000
+ 1. As for the data file, since every value of every attribute occupies 10 Bytes and we have 5 attributes
in every tuple of MEETING, we know that every tuple occupies 50 Bytes and therefore each page (whose size
is 1.000 Bytes) holds 1.000/50 = 20 tuples. It follows that the data file is stored in 800.000/20 = 40.000
pages. So, for the insertion into the data file the cost is 40.000 + 1.

Problem 5 (only for students who opted for option 1, i.e., who do not do the project)
Let B be a relational database with relations Student(id,age), Exam(stid,ccode,mark),
Course(ccode,credits), Teaches(pcode,ccode), Prof(pcode,age), Tutoring(pcode,stid,year), where (i)
each exam is given by a student for a given course and with a given mark, (ii) each professor can teach several
courses and each course can be taught by several professors, (ii) each professor can be the tutor of several
students and each student can be tutored by several professors.

5.1 Describe how you would organize a property graph database G in order to represent the relational database
B. In particular, (i) specify how nodes, edges, labels, etc. of G are used in order to capture the information
stored in the tables of B and (ii) choose a few tuples for the relations in B, and show the specific property
graph database G obtained by applying the chosen representation method.

5.2 Describe how you would organize a document database D in order to represent the relational database B.
In particular, (i) specify how collections, documents, etc. of D are used in order to capture the information
stored in the tables of B and (ii) choose a few tuples for the relations in B, and show the specific D obtained
by applying the chosen representation method.

Solution 5

5.1 (i) One possible solution for representing graphG is the following. Let L = {Student, Professor, Course}
be the set of labels, P = {age, mark, credits, year} the set of properties, and E =
{hasTutor, tookExam, teaches} the set of edge types. Each tuple of the relation Student is represented
in G as a node having Student as a label, and having the properties id and age. For the property id

of nodes representing students, i.e., those having Student as a label, we can define both an existence and
a uniqueness constraint to capture the fact that it is a key. Similarly, each tuple of the relation Prof is
represented in G as a node with the label Professor and the properties pcode and age, where existence and
uniqueness constraints can be applied to pcode. Then, for each tuple of the relation Course, there exists a
node in G with label Course and with the property credits. Each tuple ⟨p, c⟩ in the relation Teaches is
represented by means of a directed edge of type teaches connecting the node having pid= p to the node
having ccode= c. For each tuple ⟨p, s, y⟩ of relation Tutoring, G contains an edge e of type hasTutor going



Figure 1: Property graph G corresponding to the database B.

from a node representing a student having id= s to a node which represents a professor with pcode= p.
Edge e also includes the property year whose value is y. Finally, each tuple ⟨s, c,m⟩ of relation Exam is
represented in G as an edge e connecting a node with label Student and with id= s to a node with label
Course and with ccode= c, and such that e includes the property mark with value m.

(ii) Let database B be constituted by the following tuples: Student = {⟨s1, 24⟩, ⟨s2, 21⟩, ⟨s3, 23⟩}, Exam
= {⟨s1, c2, 28⟩, ⟨s2, c2, 25⟩, ⟨s2, c1, 30⟩} Course = {⟨c1, 6⟩, ⟨c2, 9⟩} Teaches = {⟨p1, c2⟩, ⟨p2, c1⟩}, ⟨p2, c2⟩ Prof
= {⟨p1, 53⟩, ⟨p2, 41⟩} Tutoring = {⟨p1, s2, 2023⟩, ⟨p1, s3, 2024⟩⟨p2, s2, 2022⟩}. The corresponding property
graph is depicted in Figure 1.

5.2 (i) When designing the database, we need to decide when to adopt a normalised (referenced) or denormalised
(embedded) approach. Either comes with advantages and disadvantages in terms of redundancy, efficiency
of query answering and complexity of the schema. The decision on whether to pick one or the other depends
on the specific requirements.

We propose a solution consisting of three distinct collections: students, courses, and professors. Each
document of the collection students includes the fields id (identifier within the collection), age and exams,
where exams is associated to an array of documents with fields ccode and mark. The documents of the
collection professors have fields pcode (identifier), age, courses, and tutor, where courses is an ar-
ray containing the identifiers of the courses taught by a professor, and tutor is an array of documents
with fields stid and year. Finally, the collection courses contains documents with fields ccode (identi-
fier), and credits. Such a solution follows a denormalised approach (embedded) for both relations Exams
and Tutoring, in that the corresponding information is completely encapsulated into the documents of the
collections students and professors, respectively, while the information about the relation between profes-
sors and courses is managed through a normalised approach (referenced), since documents of the collection
professors simply contain an array of references to the identifiers of the courses they teach. Depending on
the specific requirements about the queries to be executed more often, one might decide to adopt different
strategies, e.g., by normalising information about exams by creating a new collection exams, whose docu-
ments contain the fields stid, ccode and mark, and possibly adding references to such documents also in
the collections students and/or professors.

(ii) The document-based database corresponding to the modeling provided in (i) is depicted in Figure 2
using the data from database B.



Figure 2: Document-based database D, corresponding to database B.


