
Data Management – exam of 08/06/2023 (B)
Problem 1
Let Trainer(id,nation) be a relation with 500 pages stored in a file sorted on ⟨id,nation⟩,
Team(name,city) a relation with 100 pages sorted on ⟨name,city⟩ and Coached(id,nation,name,city)

a relation with 35.000 pages sorted on ⟨id,nation,name,city⟩. With the goal of knowing, for each trainer,
the teams that (s)he has not coached, we want to compute the set difference between the cartesian product
of Trainer and Team and the relation Coached. Tell which is the best algorithm that a query engine with
107 free buffer frames should use for this task, indicating also the cost of executing such algorithm.

Solution 1
An obvious and acceptable solution would be to compute the whole cartesian product sorted on the basis
of the same sorting criteria as Coached, store it in a temporary relation and then compute in one pass the
set difference between such temporary relation and the relation Coached. However, it is worth looking for
a more efficient method, that does not require to materialize the cartesian product. For this purpose, we
can notice that, since Trainer(id,nation) is sorted on ⟨id,nation⟩ and Team(name,city) is sorted on
⟨name,city⟩, we can easily compute the cartesian product of Trainer and Team in such a way that the
resulting relation is sorted on ⟨id,nation,name,city⟩: it is sufficient to combine the tuples of the two
relation by respecting the order of each of them. Also, notice that the whole relation Team fits in the buffer.
This means that if we read Team in 100 buffer frames and then we read Trainer one page at a time using the
101th buffer frame, we can produce the cartesian product sorted on ⟨id,nation,name,city⟩ one page at a
time using the 102th buffer fame. In turn this means that, based on the sorting on ⟨id,nation,name,city⟩
of both the cartesian product of Trainer and Team and the relation Coached, we can compute on the fly
their difference by reading the relation Coached one page at a time in the 103th buffer frame and using the
104th buffer frame as the output frame. Since we access each page of all the relations only once, the whole
algorithm is one-pass, and its cost is 100 + 500 + 35.000 = 35.600 page accesses.

Problem 2
Answer the following two questions, providing a suitable motivation for each answer.

3.1 Give an example of three transactions which have the following properties: (i) there exists a schedule
S on the three transactions such that when S is given in input to a timestamp-based scheduler, a
deadlock occurs; (ii) for each pair of the three transactions and for any schedule S on such pair, no
deadlock occurs when S is given in input to a timestamp-based scheduler.

3.2 Try to generalize the above example to the case of n transactions. More precisely, try to come up with
an example of n transactions having the following properties: (i) There exists a schedule S on the n
transactions such that when S is given in input to a timestamp-based scheduler, a deadlock occurs.
(ii) For each n − 1 transactions of the n chosen transactions and for any schedule S on such n − 1
transactions, no deadlock occurs when S is given in input to a timestamp-based scheduler.

Solution 2

3.1 Here is the example:
T1 = w1(x1) w1(x2),
T2 = w2(x2) w2(x3),
T3 = w3(x3) w3(x1).

Consider now the schedule S: w1(x1) w2(x2) w3(x3) w1(x2) w2(x3) w3(x1). It is easy to see that:

– when S is given in input to a timestamp-based scheduler, a deadlock occurs;

– for every pair of transactions T1, T2, T3 and for every schedule S ′ on such pair, no deadlock occurs
when S ′ is given in input to a timestamp-based scheduler.



3.2 The generalization of the above example to n transactions is immediate:
T1 = w1(x1) w1(x2),
T2 = w2(x2) w2(x3),
· · ·
Tn−1 = wn−1(xn−1) wn−1(xn),
Tn = wn(xn) wn(x1).

Consider now the schedule S: w1(x1) w2(x2) . . . wn−1(xn−1) wn(xn) w1(x2) w2(x3) . . . wn−1(xn)wn(x1).
It is easy to see that:

– when S is given in input to a timestamp-based scheduler, a deadlock occurs;

– for every pair of transactions T1, T2, T3, . . . , Tn and for every schedule S ′ on such pair, no deadlock
occurs when S ′ is given in input to a timestamp-based scheduler.

Problem 3
Let R(A,B,C,D) (with 52.000 pages) and S(E,F,G,H) (with 20.000 pages) be two relations stored in a heap
at processor P0. We know that 300 free buffer frames are available at P0 and that 100 tuples of each relation
fit in one page. Also, we know that attribute C contains 500 values uniformly distributed in the tuples of
R, and the same holds for attribute H in S. Finally, we know that there are 10 processors P1, . . . , P10 that
we can use for processing queries, each with 80 free frames available. Consider the query that computes the
equi-join between R and S on the condition C = H, and compare the following two cases:

3.1 The query is executed at processor P0.

3.2 The query is executed in parallel after sending the tuples of the two relations to processors P1, . . . , P10.

For each of the above cases, illustrate the algorithm you would use and discuss its cost in terms of number
of page accesses (case 1.1) and elapsed time (case 1.2).

Solution 3

3.1 The query is executed at processor P0. We cannot use a one-pass algorithm for computing the join,
but, since 300× 299 > 52.000 + 20.000, we can use a two-pass algorithm based on sorting. We know
that we have two types of such algorithms, the simple sort-based join algorithm, and the sort-merge
join algorithm and we know that the latter is more efficient, as far as the problem of “fragments with
too many joining tuples” does not occur.

Let us compute the maximum number of tuples joining between the two relations, by computing the
number of tuples in R having the same value in the joining attribute C as 52.000×100/500 = 10.400, and
the number of tuples in S having the same value in the joining attribute H as 20.000×100/500 = 4.000.
This means that we need at least 4.000/100 = 40 pages in the buffer to hold all the tuples of the
maximum fragments of S, and apply the one-pass join for such fragments. Now, in the case of sort-
merge join algorithm, we have 52.000/300 = 174 sublists for R and 20.000/300 = 67 sublists for S, and
therefore, since 300 - (174 + 67) = 59 > 40 we do have sufficient room in the buffer for holding the
fragments of S with tuples with the same value of H during the merging phase of the algorithm. We
conclude that we choose the sort-merge join algorithm, with a cost of 3× (52.000+20.000) = 216.000.

3.2 The query is executed in parallel after sending the tuples of the two relations to processors P1, . . . , P10.

We assume that we have a good hash function on the values in the attributes C and H so that the
hash-based partitioning distributes the tuples of the two relations uniformly. Using such hash function,
we read the two relations R and S at processor P0 and we send to each of the 10 processors P1, . . . , P10

5.200 pages of R and 2.000 pages of S. Let us now consider the situation at any of the 10 processor,
say processor Pi. We immediately notice that we cannot use a one-pass or a two-pass algorithm (e.g..
based on sorting) for computing the join, because 5.200+2.000 > 80×79, but we can use a three-pass
algorithm, because 5.200 + 2.000 < 80 × 79. Also, notice the number of tuples in R having the same



value in the joining attribute C as 520.000/50 = 10.400, and the number of tuples in S having the
same value in the joining attribute H as 200.000/50 = 4000. This means that, again, we need at least
40 pages in the buffer to hold all the tuples of the maximum fragments of S, and apply the one-pass
join for such fragments. In the case of three-pass sort-merge join algorithm, we have 5.200/80 = 65
sublists for R and 2.000/80 = 67 sublists for S generated in the first pass, and only one sublist for each
of the two relations generated at the second pass. So, we have plenty of buffer frames available for
holding all the tuples of the fragments of S with the same value for S, and apply the one-pass join for
such fragments during the third pass (the “merging phase”). We conclude that we again choose the
sort-merge join algorithm, and, if we first store the two relations in the secondary storage when they
arrive at processor Pi, and then we execute the sort-merge join algorithm, the elapsed time will be
52.000+20.000 (for reading the two relations at processor P0) + 5.200+2.000 (for storing the relation
in the processor Pi) +5 × (5.200 + 2.000) = 115.200 page accesses as elapsed time. We can actually
do better by avoiding to store the two relations when they arrive at the processor, simply producing
the corresponding sorted sublists, thus obtaining 52.000+20.000+4× (5.200+2.000) = 100.800 page
accesses as elapsed time.

Problem 4
Consider the following schedule S:

B1 w1(X) B2 w2(Y ) B3 w3(Z) c3 B4 r4(Z) r4(Y ) w4(W ) B5 r5(W ) c4 w5(W ) c5 w1(Y ) c1 w2(X) c2

where the action Bi means “begin transaction Ti”, the initial value of every item X, Y, Z,W is 200 and every
write action increases the value of the element on which it operates by 200. Suppose that S is executed by
PostgreSQL, and describe what happens when the scheduler analyzes each action (illustrating also which
are the values read and written by all the “read” and “write” actions) in both the following two cases: (1) all
the transactions are defined with the isolation level “read committed”; (2) all the transactions are defined
with the isolation level “repeatable read”.

Solution 4
We first deal with the isolation level “read committed”. We remind the reader that such isolation level does
not prevent the unrepeatable read anomaly (that, however, cannot occur in our case) nor the lost update
anomaly (that actually occurs).

• w1(X): T1 writes 400 on X in the local store.

• w2(Y ): T2 writes 400 on Y in the local store.

• w3(Z): T1 writes 400 on Z in the local store.

• c3: T3 commits and the value 400 for Z is written in the database.

• r4(Z): T4 reads 400.

• r4(Y ): T4 reads 200.

• w4(W ): T4 writes 400 on W in the local store.

• r5(W ): T5 reads 200.

• c4: T4 commits and the value 400 for W is written in the database.

• w5(W ): T5 writes 600 on W in the local store (a kind of lost update anomaly).

• c5: T5 commits and the value 600 for W is written in the database.



• w1(Y ): not executed, because T2 holds the write lock on Y ; so T1 is suspended because it must wait
for the end of T2.

• w2(X): not executed because T1 holds the write lock on X; a deadlock is recognized, T2 is aborted
and T1 is resumed, writing the value 400 on Y in the local store

• c1: T1 commits and the value 400 both for X and for Y is written in the database.

• c2: T2 was aborted and now it rollbacks.

We now deal with the isolation level “repeatable read” (in bold the difference with respect to the previous
case). We remind the reader that such isolation level prevents both the unrepeatable read anomaly (that,
however, cannot occur in our case) and the lost update anomaly (that can occur).

• w1(X): T1 writes 400 on X in the local store.

• w2(Y ): T2 writes 400 on Y in the local store.

• w3(Z): T1 writes 400 on Z in the local store.

• c3: T3 commits and the value 400 for Z is written in the database.

• r4(Z): T1 reads 400.

• r4(Y ): T1 reads 200.

• w4(W ): T4 writes 400 on W in the local store.

• r5(W ): T1 reads 200.

• c4: T4 commits and the value 400 for W is written in the database.

• w5(W ): T5 aborted with message: “ERROR: could not serialize access due to concurrent
update”.

• c5: T5 rollbacks.

• w1(Y ): not executed, because T2 holds the write lock on Y ; so T1 is suspended because it must wait
for the end of T2.

• w2(X): not executed because T1 holds the write lock on X; a deadlock is recognized, T2 is aborted
and T1 is resumed, writing the value 400 on Y in the local store

• c1: T1 commits and the value 400 both for X and for Y is written in the database.

• c2: T2 was aborted and now it rollbacks.

Problem 5 (only for students enrolled in an A.Y. before 2021/22 who do not do the project)
Consider a database B about musicians and concerts, where: (i) for each musician we are interested in the
id, the age, the sex, the city of birth, the city (s)he is living in, the music academy where (s)he graduated
and the concerts to which (s)he participated; (ii) for each concert we are interested in the average price of
the ticket, in the month and the year when it was held, with the decade of the year, and the city where
the concert was held; (iii) for each city we are interested in the province, the region and the number of
inhabitants; (iv) for each music academy we are interested in the name and the founder. We want to build
a data warehouse on all the above data for various analyses on participation of musicians to concerts in



the last 50 years. You are asked to show (1) the ER schema of the database, (2) the DFM schema of the
data warehouse, (3) the corresponding star schema (optionally, with the queries used to populate the star
schema tables), and (4) based on such tables, the SQL query that computes the number of musicians who
participated in concerts, for each region of the city of birth of the musicians, and for each music academy
where the musicians graduated.



Solution 5

BornIn

Musician

City

LivesIn

(1,1)(1,1)

(1,1)

(1,1)

Year
Month
AvgPrice

Id
Age
Sex

Inhabitants
Province
Region

Name

Founder

ER Schema

HeldIn

ParticipatedIn Concert

AcademyGraduatedIn

(1,1)

Participation

datecity count month year

decade

name

founder

provinceregion

musician

DFM Schema

academy

sex
age

residenceCity
birthCity

inhabitants



Star Schema

keyM
keyD
keyC
countkeyM

id
age
sex

birthCity
residenceCity
academyName
academyFounder

keyC
province
region

inhabitants

keyD
month
year

decadeParticipation

Musician

Date

City

Number of musicians who participated in concerts, for each 
region of the city of birth of the musician, and for each 
music academy where the musician graduated

SQL query

SELECT c.region, m.academyName, count(*) as noOfMusicians
FROM Participation p JOIN Musician m ON m.id = p.keyM

JOIN City c ON m.birthCity = c.keyC 
GROUP BY c.region, m.academyName 


