
Data Management – exam of 13/07/2022
Problem 1
In a schedule S on transactions {T1, . . . , Tn} we say that two transactions Ti, Tj share the element X of the
database if there exist actions α(X) in Ti and β(X) in Tj such that α is either ri or wi and β is either rj or
wj. Moreover, S is called “chary” if (i) no transaction in S uses the same element twice, and (ii) for every
Ti, Tj ∈ {T1, . . . , Tn}, Ti and Tj share at most one element. Prove or disprove the following claims:

1.1 Every chary schedule is view-serializable.

1.2 Every chary schedule on two transactions is conflict-serializable.

1.3 Every chary schedule on two transactions is a 2PL schedule with exclusive and shared locks.

Solution

3.1 The claim can be disproved by the following counterexample:

r1(x)w2(x) r3(y)w1(y) r2(z)w3(z)

Indeed, the schedule S is clearly chary but is not view serializable, because in any serial schedule with
the same transactions of S, the read-from relation is non-empty, and therefore differs from the one of
S, which is empty.

1.2 We prove the claim by showing that every schedule that is not conflict-serializable is not chary. Con-
sider a schedule S on two transactions {T1, T2} and assume S not conflict-serializable, meaning that
there is a cycle in the precedence graph associated to S. This in turn means that there are at least two
different pairs of conflicting actions in S, say α(x), β(x) and γ(y), δ(y) appearing in different orders in
S. There are two cases: either x = y, or x 6= y. In the first case, we have at least three actions using
the same element, and therefore at least one of the two transactions uses the same element twice,
thus contradicting one of the conditions for chary schedules. In the second case, T1 and T2 share two
different elements, thus again contradicting one of the conditions for chary schedules.

1.3 The claim can be proved by osserving that every chary schedule on transactions T1, T2 can follow the
following protocol, which is clearly a specialization of the 2PL protocol:

• At the beginning of the schedule, T1 acquires the lock for every element it uses, except for the
element shared with T2.

• Immediately after that, T2 acquires the lock for every element it uses, except for the element
shared with T2.

• Just before the first action (say by transaction Ti) on the element x shared by the two transactions,
Ti locks the element x, executes the action, and then immediately releases the lock on x. Just
before the action of Tj (where j 6= i) on the element x, Tj acquires the lock on x.

• At the end of the schedule, all the locks held by T1 and T2 are released.

Problem 2
Let S be the schedule: r1(Z)w3(Y )w3(V ) r1(Y ) r2(V )w2(Y )w3(X) r2(X) r2(Z) r3(Z)w4(Z)w4(X)w2(X)

2.1 Tell whether S is accepted by the 2PL scheduler with exclusive and shared locks. If the answer is yes,
then specify the 2PL schedule obtained from S by adding suitable lock and unlock commands. If the
answer is no, then explain the answer.

2.2 Tell whether S is view-serializable. If the answer is yes, then illustrate a serial schedule which is
view-equivalent to S. If the answer is no, then explain the answer.

2.3 Answer all the following questions, motivating the answers: (i) Is S recoverable? (ii) Is S ACR? (iii)
Is S strict?

Solution

2.1 Since every schedule accepted by the 2PL scheduler with exclusive and shared locks is view-serializable,
and since S is not view-serializable (see later), we conclude that S is not accepted by the 2PL scheduler
with exclusive and shared locks.



2.2 Simply by considering the last fragment of S:

· · · r2(Z) r3(Z)w4(Z)w4(X)w2(X)

we conclude that S is not view-serializable. Indeed, in any serial schedule in which T4 comes before T2,
we have that r2(Z) reads-from w4(Z) (and such reads-from pair is not is S), and in any serial schedule
in which T2 comes before T4, we miss the final write w2(X) which is present in S. This implies that any
serial schedule on the same transactions of S differ from S in the read-from relation or the final-write
set, in turn implying that S is not view-serializable.

2.3 (i) Since T1 and T2 are the only transactions with actions reading from other transactions (actually,
the only transaction T3) we conclude that S is recoverable: indeed, it is sufficient that c3 appears
before both c1 and c2 to make the schedule recoverable. (ii) It is immediate to note that the action
r1(Y ) of T1 reads from w3(Y ) of T3 before the commit of T3 (indeed, the commit of T3 cannot occur
before w3(X) and r3(Z)); this shows that S is not ACR. (iii) Since S is not ACR, we conclude that
it is not strict.

Problem 3
Let R(A,B,C), S(A,D,E), T(A,B,C) be three tables (where T is a bag) and let τ indicate the ternary operator
such that τ(R,S,T) = δ(T ∪b πA,B,C(R ./ S)), where δ denotes duplicate elimination, ∪b denotes bag union
and ./ denotes natural join.

3.1 Design and describe in detail a one pass algorithm that, given R,S,T as above, each one stored as a
heap, computes τ(R,S,T).

3.2 Tell what is the weakest condition under which the algorithm can be used and illustrate the cost of
the algorithm in terms of number of page accesses.

3.3 Tell what does it change if all the tables have A as key and are stored as sorted file with search key A.

Solution

3.1 A one-pass algorithm could be easily defined in the case where the pages of all the three tables
δ(T),R′, S fit in M − 1 frames, where

• δ(T) denotes the set of tuples of T without duplicates,

• R′ denotes the tuples of R that are not in T, and

• M is the number of buffer frames available (one frame is reserved for the output, as usual).

Indeed, in this case, we can analyze all the pages of R,S,T once using the following strategy:

(1) we first load T, and while doing this we eliminate its duplicates, thus obtaining δ(T) in the buffer;

(2) we load R by avoding to load the tuples of R already appearing in δ(T), thus obtaining R′ (since
A is the key for R, R′ does not have duplicates);

(3) we load S;

(4) we consider every tuple s ∈ S: if s has a joining tuple t in R, then we put t in the output frame,
and we delete t from δ(T). At the end, we copy to the output all the tuples of δ(T) still appearing
in the buffer.

The condition under which the above algorithm can be used is: B(δ(T)) +B(R′) +B(S) ≤M − 1.

We can actually do better by noticing that we can avoid storing one of the tables R, S in the buffer.
Indeed, we can store in the buffer only the smallest between the two tables. After step (1) above, and
after storing the smallest between the two tables, if the smallest is R, then we read S in one buffer
frame and we execute step (4) above while reading S. If the smallest is S, then we read R in one
buffer frame and for each tuple t of R we do the following: if t does not join with S, then we ignore it.
Otherwise, we put t in the output frame, and we delete t from δ(T).



3.2 From the algorithm just described it is easy to conclude that the weakest condition under which
we can use a one-pass algorithm for computing τ(R,S,T) is B(δ(T)) + B(X) ≤ M − 2, where X is
R’ if R’ is smaller than S, and is S if S is smaller than R’. Obviously, the cost of the algorithm is
B(T) +B(R) +B(S).

3.3 If all the tables are stored as sorted file on the key A, then it is immediate to see that we can execute
a trivial one-pass algorithm by using only 4 frames (one for T, one for R, one for S and one for the
output) and by adopting an obvious “merge” strategy on the sorted tuples.

Problem 4
Consider the relations Flight(code,company,type) with 1.000 pages and 10.000 tuples, and
Ticket(number,code,company,type) with 2.000 pages and an associated index on Ticket with search
key 〈company,type〉, for which we know that the cost of retrieving the records with a specific value of
attribute company is 3 page accesses. Assume a buffer with 50 frames, and consider the two queries shown
below.

Query Q1:

select code, company from Flight

except all – – not removing duplicates
select code, company from Ticket

Query Q2:

select company, type from Flight

except all – – not removing duplicates
select company, type from Ticket

where “except all” denotes bag difference. For both queries Q1 and Q2, tell (i) whether it is possible to
process the query by using a block-nested loop algorithm, and (ii) whether it is possible to process the
query by using an index-based algorithm. In all four cases, if the answer is positive, then describe the
algorithm and tell which is its cost in terms of number of page accesses. If the answer is negative, then
motivate the answer in detail.

Solution

(i) We analyze the case of processing the queries by using the block-nested loop algorithm.

– In the case of query Q1, the query consists in a difference between a set (the projection of Flight
on code,company is a set because code is a key of Flight) and a bag (the projection of Ticket
on code,company may contain duplicates). Therefore, we can surely use the block-nested loop
algorithm, because every tuple t of Flight appears in one page Pt only, and we decide if keeping
the tuple t or not when we have in the buffer the block of Flight containing page Pt. Indeed,
when we have such block on the buffer, we scan the relation Ticket to check whether it contains
at least one occurrence of t, in which case we do not copy t in the output, otherwise we copy it
in the output. The cost of the algorithm is simply B(Flight) + B(Flight) × B(Ticket)/50 =
1.000 + 1.000× 2.000/50) = 41.000.

– In the case of query Q2, since the projection of Flight on company,type may contain duplicates,
the query consists in a difference between two bags, and therefore the block-nested loop algorithm
cannot be used: indeed, when loading a block b of pages of Flight, we cannot be aware of other
duplicates of the tuples in B appearing in the blocks already analyzed, and therefore we cannot
decide if we have to keep such tuples or not.

(ii) We analyze the case of processing the queries by using an index-based algorithm. In particlar. we refer
to an index-based algorithm for computing the difference between two collections using a nested-loop
schema as follows: we analyze all the tuples of the first operand and, for each of them, we use the index
for finding all the occurrences of the tuple in the second operand. Note that the search key of the
index is 〈company,type〉, and therefore the index conforms to both the selection condition appearing
in Q1 (code = v1 and company = v2) and the selection condition appearing in Q2 (company = v1 and
type = v2), because in both cases there exists a prefix P of the search key such that, for each attribute
in P , there is an equality condition on such attribute in the conjunction (in particular, such prefix P
is 〈company〉.



– In the case of query Q1, since the first operand is a set, we can surely use the index-based
algorithm: for each tuple 〈v1, v2〉 in the projection of Flight on code,company, we know that
the tuple has only one occurrence in Flight, and therefore it is sufficient to use the index in
order to check whether 〈v1, v2〉 appears in the projection of Ticket on 〈company, type〉: if the
answer is positive, then we keep the tuple in the result, otherwise we ignore it. The cost of the
algorithm is simply B(Flight) + NT (Flight) × 3, where NT (Flight) denotes the number of
tuples in Flight. This means that the cost is 1.000 + 10.000× 3 = 31.000 page accesses.

– In the case of query Q2, the query consists in a difference between two bags, and therefore an
index-based algorithm cannot be used: indeed, when considering a tuple in the projection of
Flight on code,company, we cannot be aware of the fact that other duplicates of the tuple have
already been considered, and therefore we cannot decide if we have to keep such tuple or not.

Problem 5 (A.Y. 2021/22)
Describe in detail the notion of “star schema” in data warehousing and illustrate the difference between
such a notion and the notion of “snowflake schema”.

Solution
Please, see the slides of the course, in particular the slides on Data Warehousing.


