
Data Management – exam of 12/07/2021
Solutions

Problem 1
A schedule S is called “one-writer” if at most one transaction appearing in S has write actions. Prove
or disprove the following two statements:

1. A “one-writer” schedule S is conflict-serializable if and only if it is view-serializable.

2. A “one-writer” schedule S is conflict-serializable if and only if it is a 2PL schedule.

The solution must be provided under the usual assumption that no transaction reads or writes the
same element more than once.

Solution to problem 1

1. It is well-known that if S is conflict-serializable, then it is also view-serializable. So, it remains
to show that if S is a view-serializable one-writer schedule, then it is also conflict-serializable.
Assume that S is view-serializable, implying that there exists a serial schedule S ′ that is view-
equivalent to S. Our aim is to prove that S and S ′ are conflict-equivalent. Suppose, by contra-
diction, that S and S ′ are not conflict-equivalent. This means that there is a pair of conflicting
actions, say ai(X) and aj(X), appearing in different order in the two schedules. Since one of
these actions is a write and one is a read, we conclude that S ′ has a different “read-from” relation
wrt S, which implies that S and S ′ are not view-equivalent.

2. It is well-known that if S is a 2PL schedule, then it is conflict-serializable. So, it remains to
check whether if S is a conflict-serializable one-writer schedule, then it is also a 2PL schedule.
This is disproved by the following counterexample:

S = w1(x) r2(x) r3(y) w1(y)

Indeed, it is easy to see that S is conflict serializable, but it is not a 2PL schedule.

Problem 2
Consider the following schedule S:

B(T0) w0(A) c0 B(T1) w1(A) B(T2) r2(A) w2(B) c1 B(T3) r3(A) w3(C) w3(B) w2(C) c3 c2

where the action B means “begin transaction”, and every write action performed by transaction Ti

writes the value i on the element corresponding to the argument. Suppose that S is executed by
PostgreSQL with all the transactions defined with the isolation level “read committed”, and for each
action different from B tell what is the effect of the action and what is the behavior of the system
when it executes the action.

Solution to problem 2
We should remember the following important points regarding SQL and PostgreSQL:

• The lock-based concurrency control implementation of SQL keeps write locks until the end of
the transaction, but read locks are released as soon as the SELECT operation is performed.

• The concurrency control strategy of PostgreSQL is a sort of multiversion control, where reads are
never blocked (they read the value written by the last committed transaction), and write actions
are performed on a local store (snapshot), and their effects are transferred to the database at
commit.



• PostgreSQL adopts a recognition approach to deadlock.

The effect of each action and the behavior of the system is specified as follows:

• w0(A) writes 0 on A in the local store associated to T0

• c0 commits T0, and the value 0 for A is now in the database

• w1(A) writes 1 on A in the local store associated to T1

• r2(A) reads the value 0, the value written by T0, the last committed transaction that wrote on
A

• w2(B) writes 2 on B in the local store associated to T2

• c1 commits T1, and the value 1 for A is now in the database

• r3(A) reads the value 1, the value written by T1, the last committed transaction that wrote on
A

• w3(C) writes 3 on C in the local store associated to T3

• when T3 tries to execute the action w3(B), such action is not executed because T2 holds the
exclusive lock on B. So, T3 is suspended waiting for the commit of T2

• since C was written by T3, when T2 tries to execute the action w2(C), the system recognizes
a deadlock, because T3 is waiting for the end of T2, and T2 should now wait for the end of T3.
Therefore, action w2(C) is not executed, T2 is aborted in order to resolve the deadlock, and T3

becomes active again

• c3 commits T3, and the value 3 for C and the value 3 for B are now in the database

• c2 is ignored, because T2 was aborted

Problem 3
Let R(A,B) be a relation with 100.000 pages, and S(C,D) a relation with 500.000 pages. We know that
(i) R has 2.000 values in A, uniformly distributed in the various tuples, (ii) there is a clustered, sparse
B+-tree index on R with search key A, (iii) 60 tuples of R fit in one page, (iv) we have 260 frames
available in the buffer, and (v) every value and pointer occupy the same amount of space. Consider
the query:

select A,D

from R, S

where B = C and A >= 10 and A <= 15

Show the logical query plan associated to the query, as well as the logical query plan and the physical
query plan you would choose for executing the query efficiently. Also, tell which is the cost (in terms
of number of page accesses) of executing the query according to the chosen physical query plan.

Solution to problem 3
The logical query plan associated to the query is shown below:



𝜋A,D

R

Logical query plan

𝛔B=C and A>=10 and A<=15 

×

S

The chosen logical query plan is shown below:

The chosen logical query plan

𝜋A,D

𝛔A>=10 and A<=15 S

B = C

R

The selection operation can be performed by using the index. Indeed, this is a range selection, and
can be well supported by a clustered index. So, let us evaluate the cost of computing all the pages of
R satisfying the selction condition using the index, assuming that the index uses alternative 1. Since
in every page we have space for 60 tuples of R(A,B), it follows that we have space for 60 data entries,
and taking into account the 67% occupancy rule, we have 40 data entries per page. Since the index is
sparse, we have one data entry for each page of the relation, and so the number of leaves is 100.000/40
= 2.500. Since 60 tuples of R fit in one page, we have that the number of tuples of R(A,B) is 100.000
× 60 = 6.000.000, and the number of tuples with the same value for A is 6.000.000/2.000 = 3.000.



So, the number of pages with the same value of A is 3.000/60 = 50. Since we have 6 values for A to
consider, we have to access 50 × 6 = 300 pages of R(A,B). To access them, we use the index searching
for the value 10 of A in R(A,B) and then we move to the data file in order to access the 300 pages
of R(A,B). The fan-out of the tree is (60+30)/2=45, and therefore the cost of accessing the first data
record is log45 2.500 + 1.

The set of tuples in the pages of the data file accessed by the index form one operand of the join
with S(C,D). Since 300 > 260, the join cannot be executed in one pass. One possibility is using a two
pass algorithm, but the cost would be (300 + 500.000) × 3. Instead, it is no difficult to see that it
is more efficient to choose a block-nested loop algorithm for the join, requiring to scan the relation
S(C,D) only twice.

The resulting physical query plan is shown below:

TableScan(S)

Physical query plan

1-pass projection

Block-nested loop join (260 frames)

300 pages 500.000 pagesIndexScan(R,A,A>=10 and A<=15)

The cost of the execution of the whole physical query plan is log45 2.500 + 1 + 300 + 2 × 500.000 =
1.000.304 page accesses.

Problem 4
Let Building(bcode,floors,area,value,cat,city) be stored in a heap file with 840.000 tuples,
and City(ccode,nation,nab) be stored in a heap file with 9.000.000 tuples. We assume that every
value has the same size, that every page has room for 600 values, that V (Building,floors) = 100,
V (Building,city) = 300, and that we have 85 free buffer frames available. Consider the query:

select distinct floors, city, nab

from Building, City

where city = ccode and nab > 10000

Show the logical query plan associated to the query, as well as the logical query plan and the physical
query plan you would choose for executing the query efficiently. Also, tell which is the cost (in terms
of number of page accesses) of executing the query according to the chosen physical query plan.

Solution to problem 4
The logical query plan associated to the query is shown below.



𝜋floors, city nab

Building

Logical query plan

𝛔city=ccode and nab > 10000

×

City

𝜹

After pushing selection, duplicate elimination and projections we have the following logical query
plan:

𝛅

Building 

Logical query plan

𝜋 floors, city nab

𝞼nab > 10000

city=ccode

𝜋 floors, city 

City

𝜋ccode,nab

Note that duplicate elimination has not been pushed through the branch of City, because the
right-hand side operand of the join contains a key of the relation, and therefore does not have dupli-
cates. Note also that after duplicate elimination we cannot have more that V (Building,floors) ×
V (Building,city) = 30.000 tuples. The number of tuples of the various nodes of the plan is shown
here:



Logical query plan

840.000

30.000

280.000

9.000.000

9.000.000

3.000.000

30.000

𝛅

Building 

𝜋 floors, city nab

𝞼nab > 10000

city=ccode

𝜋 floors, city 

City

𝜋ccode,nab

The number of pages is shown here:

Logical query plan

8.400

100

2.800

45.000

10.000

3.334

100

𝛅

Building 

𝜋 floors, city nab

𝞼nab > 10000

city=ccode

City

𝜋ccode,nab𝜋 floors, city 

Note that 2.800 + 3.334 < 85 × 84, and therefore we can use a two pass algorithm for the join.
Also, we can combine the join with the duplicate elimination for Building if we use an algorithm
based on sorting. Indeed, we can produce the sorted sublists for Building based on a sorting on
〈city,floors〉, and we can produce the sorted sublists for City based on a sorting on ccode, so that



we can carry out the merging phase based on city and ccode, and simply eliminate duplicates during
such merging phase of the two pass join algorithm.

Here is the physical query plan:

TableScan(Building)

one pass
projection

TableScan(City)

one pass
projection

one pass
selection

one pass
projection

two pass join based on sorting 
combined with duplicate 

elimination (using 85 frames)

8.400

2.800

100

45.000

10.000

3.334

The cost is: 8.400 (reading of Building) + 45.000 (reading of City) + 2.800 (writing of the 2.800 /
85 = 33 sublists for Building during the first phase of the two pass join algorithm) + 3.334 (writing
of the 3.334/85 = 40 sublists for City during the first phase of the two pass join algorithm) + 2.800
(reading of the 33 sublists during the merging phase of the two pass join algorithm) + 3.334 (reading
of the 40 sublists during the merging phase of the two pass join algorithm) = 65.668 page accesses.



Problem 5
If R1(A,B) and R2(A,B) are two relations each with key A, then the disjoint left-union of R1 and R2,
indicated as R1 � R2, is the relation with attributes A,B and with the set of tuples specified as follows:
(i) for each tuple t ∈ R1 such that t.B is not null, we have t ∈ R1 � R2; (ii) for each tuple t ∈ R1 such
that t.B is null and such that there exists t′ ∈ R2 with t.A = t′.A, we have t′ ∈ R1 � R2. Suppose that
we have a multiprocessor system with N nodes n1, . . . , nN , each of them with M > N free frames
available, and that the two relations R1 and R2 are stored in node n1.

1. Illustrate a parallel algorithm for computing R1 � R2.

2. Assuming B(R1) = 10.000, B(R2) = 15.000, N = 10 and M = 40, describe the cost of the
algorithm both in terms of the elapsed time, and in terms of number of page accesses.

Solution to problem 5

1. We use a hash function on the values of A for distributing the tuples of both R1 and R2 among
the various nodes, in such a way that each node ni will handle one bucket of R1 and one bucket
of R2 resulted from the same value of the hash function, and therefore containing all the tuples
with values of A that have given the result i for the hash function. This implies that if a tuple t
of R1 has the same A-value as the tuple t′ of R2, t and t′ will be stored in the same node.

• The distribution of the tuples is done at n1, following the usual mechanism: we reserve one
frame for each node (this is possible because M > N), and one frame for the input. We
load each page of R1 in the input frame, one by one. For each tuple t in the input frame
such that t.B is not null, we write t in the output of n1, because it has to be part of the
result. For each tuple t in the input frame such that t.B is null, we apply the hash function
so as to obtain the bucket (or, the processor) where the tuple should go, and we store the
tuple in the frame corresponding to the “correct” node. Obviously, when a frame is full, we
ship the tuples to the corresponding node. The same algorithm is carried out for R2. If the
hash function is good, each node receives at most B(R1)/N pages with tuples of R1 and at
most B(R2)/N pages with tuples of R2, where B(R), as usual, denotes the number of pages
of R.

• The computation at each node ni is done as follows: the pages of R1 received are stored in a
file F1 and the pages of R2 received are stored in a different file F2. Then, using a multi-pass
strategy, we iteratively produce a suitable number of sorted sublists for F1 and a suitable
number of sorted sublists for F2. Obviously, the sorting is done based on the attribute A.
In particular, the goal is to reach a situation where the number of sorted sublists for F1 is
less than (M ×B(R1)/(B(R1) +B(R2)), and for F2 is less than (M ×B(R2)/(B(R1) +B(R2)).
At this point, we carry out a final “merge-like” phase using M frames, and we compute the
final result for the buckets in ni. For doing that, we simply apply the definition of R1 � R2.

2. The worst-case cost of the algorithm in terms of total number page accesses is determined as
follows.

• We have the cost of reading the pages of both relations in the tuple distribution phase:
10.000 + 15.000 = 25.000;

• For each of the 10 nodes n1, . . . , n10, we have the following:

– the cost 10.000/10 = 1.000 of writing the bucket for R1, and the cost 15.000/10 = 1.500
of writing the bucket for R2. Since 2.500 > 40, 2.500 > 40 × 39, and 2.500 < 40 × 40
× 39, we need 3 passes to solve the problem, and therefore the additional cost is 5 ×
2.500 (as usual, we ignore the cost of writing the result). The total cost at each node
is 15.000.



Therefore the cost in terms of number of page accesses is: 25.000 + 15.000 × 10 = 175.000 page
accesses, and the cost in terms of elapsed time is 25.000 + 15.000 = 40.000 page accesses.

Notice that the above strategy could be made more efficient, by avoiding storing the pages shipped
to nodes n2, . . . , n10. However, we do not discuss such an improvement here.


