
Data Management – AA 2019/20
Solutions for the exam of 09/07/2020

Problem 1
If S is a schedule on transactions T1, . . . , Tn, then the reduced precedence graph ρ(S) associ-
ated to S is a graph that has the transactions in S as nodes, and has an edge from Ti to Tj if
and only if S contains two conflicting actions ai(x) in Ti and aj(x) in Tj on the same element
x such that ai(x) precedes (not necessarily directly) aj(x) in S, and there is no action αk(x)
in S between ai(x) and aj(x), with k different from i and j. Prove or disprove the following
claims:

1. If ρ(S) is cyclic, then S is not conflict serializable.

2. If ρ(S) is acyclic, then S is conflict serializable.

3. If ρ(S) is cyclic, then S is not view serializable.

Solution to problem 1

1. The claim can be proved by noticing that ρ(S) is a subset of the precedence graph
P (S) associated to S. Indeed, the two graphs have obviously the same nodes, and,
each edge in ρ(S) is the witness of two conflicting actions in S, and therefore such edge
also appears in P (S).

2. The claim can be disproved by the following counterexample S1:

r1(x) r2(x) w3(x) w3(y) w1(y)

The reduced precedence graph ρ(S1) contains one edge from T2 to T3 (because of
the conflicting actions r2(x) and w3(x)), and one edge from T3 to T1 (because of the
conflicting actions w3(y) and w1(y)), and therefore is acyclic. On the other hand, the
precedence graph P (S1) contains, in addition, the edge from T1 to T3 (because of the
conflicting actions r1(x) and w3(x)), which creates a cycle in P (S1), showing that S1

is not conflict serializable. Thus, ρ(S1) is acyclic, and S1 is not conflict serializable.

3. The claim can be disproved by the following counterexample S2, which is exactly
the one used to show that there are view serializable schedules that are not conflict
serializable:

w1(x) w2(x) w2(y) w1(y) w3(x) w3(y)

Indeed, the reduced precedence graph ρ(S2) contains a cycle (involving T1 and T2),
but S3 is clearly view serializable (for example, the serial schedule T1, T2, T3 is view
equivalent to S2).



Problem 2 Consider the following schedule S:

r1(x) r2(x) w3(x) w3(z) c3 r4(z) w4(y) c4 w1(y) c1 r2(y) c2

1. Is S a 2PL schedule with both shared and exclusive locks? Motivate your answers in
detail.

2. Describe the behavior of the timestamp-based scheduler when processing S, assuming
that, initially, for each element α of the database, we have rts(α)=wts(α)=wts-c(α)=0,
and cb(α)=true, and assuming that the subscript of each action denotes the timestamp
of the transaction executing such action.

Solution to problem 2

1. S is not a 2PL schedule with both shared and exclusive locks: after action r2(x),
transaction T2 must release the shared lock on x to allow w3(x) to be executed, and
therefore it must enter the shrinking phase. This means that, before releasing such
lock, it should acquire the shared lock on y (for the future action r2(y)). However, this
cannot be done without blocking the action w4(y) appearing before r2(y).

2. Here is the behavior of the timestamp-based scheduler when processing S:

(a) r1(x) → OK → rts(x) = 1

(b) r2(x) → OK → rts(x) = 2

(c) w3(x) → OK → wts(x) = 3, cb(x) = false

(d) w3(z) → OK → wts(z) = 3, cb(z) = false

(e) c3 → OK → wts-c(x) = 3, wts-c(z) = 3, cb(x) = true, cb(z) = true

(f) r4(z) → OK → rts(z) = 4

(g) w4(y) → OK → wts(y) = 4, cb(y) = false

(h) c4 → OK → wts-c(y) = 4, cb(y) = true

(i) w1(y) → OK (Thomas rule)

(j) c1 → OK

(k) r2(y) → read too late → T2 aborted



Problem 3
Let R(A,B,C,D) be a relation stored in a heap file with 89.100 pages, and consider the
following query:

select A, count(*) from R group by A

We have two options for executing the query: (1) We execute it at a single processor P
having 300 buffer frames available. (2) We carry out a parallel execution of the query using
n processors (with n > 0), each one with 16 buffer frames available. You are asked to tell
if there is a value for n such that strategy (2) is more efficient (with respect to the elapsed
time) than strategy (1). If the answer is positive, then tell which is the minimum value n
such that the above condition holds, and tell which is the corresponding cost, in terms of
both the total number of page accesses, and the elapsed time. If the answer is negative, then
explain why. In both cases, motivate your answer in detail.

Solution to problem 3

If we execute the query at a single processor with 300 buffer frames available, then, after
the projection on A (whose size in terms of number of pages is 89.100/4= 22.275) computed
in pipleline mode, we have to use a two pass algorithm for grouping (because 22.275 > 300
and 22.275 < 300 × 299), for example based on sorting. The cost is 3 × 22.275 = 66.825
page accesses (which coincides with the elapsed time, in this case).

Suppose that we use two processors, each with 16 buffer frames available. We split the
22.275 pages into two pieces of 11.138 pages each, based on a simple hash function on A, and
send each piece to a different processor. In this case, since at each processor we only have 16
buffer frames available, at each of the processors we need 4 passes (because 11.138 > 15 ×
15 × 16, while 11.138 ≤ 15 × 15 × 15 × 16), and therefore the elapsed time is 7 × 11.138=
77.966, which is higher than the elapsed time of the single processor case.

Suppose that we use three processors, each with 16 buffer frames available. We split the
22.275 pages into three pieces of 7.425 pages each based on a hash function on A, and send
each piece to a different processor. In this case, since at each processor we only have 16
buffer frames available, at each of the processors we still need 4 passes (because 7.425 > 15
× 15 × 16, while 7.425 ≤ 15 × 15 × 15 × 16), and therefore the elapsed time is 7 × 7.425
= 51.975, which is lower than the elapsed time of the single processor case.

We conclude that there are values for n such that strategy (2) is more efficient (with
respect to the elapsed time) than strategy (1), and the minimum of such values is 3.



Problem 4
Consider the relation City(code,name,region,country,population,mayor), with 1.000.000
tuples, the relation Theater(city,tcode,size), that contains, for each value of the at-
tribute city, an average of 10 tuples with that value, and the following query Q:

select name, region, avg(size)

from City, Theater

where code = city

group by region, name

order by region, name

We know that 300 values fit in one page of our system, and that our buffer has 50 free frames.
Tell which physical structures (including possible indexes) you would choose for storing the
two relations in such a way to optimize the above query Q, and tell the cost of executing the
query under the assumptions that the two relations are stored according the chosen method,
and all values occupy the same space. Motivate your answers in detail.

Solution to problem 4
The query is essentially a join between the two relations, followed by a grouping and an

“order by” clause. To support the efficient execution of the join one could think of storing
City sorted on code, and Theater sorted on city, so that the join would be performed
simply by the “merge” step of the simple sort-based join algorithm. However, with this
method, we would need to perform further costly operations (grouping and “order by”) after
the join. The number of pages of City is 1.000.000 × 6 /300 = 20.000, the number of pages
of Theater is 10 × 1.000.000 × 3 / 300 = 100.000. The merge step of the join would cost
120.000 page accesses. Writing such pages would cost 120.000 again, and then we would
need to sort the pages according to region,name (in 3 passes), and finally computing the
grouping

A more effective method is to use a clustered file in order to store the two relations
together: every tuple of City will be stored together with all the tuples of Theater repre-
senting theaters located in that city. So, every record in the clustered file will be constituted
by 36 values (on the average), namely 6 values for the tuple t of City, and 10 × 3 values
for the tuples of Theater corresponding to theaters located in the city represented by t.
This means that the clustered file needs 36 × 1.000.000 / 300 = 120.000 pages. Obviously,
in order to support the grouping and the “order by” operation, the clustered file is stored
sorted on 〈region,name〉. With this file organization, the query can be answered simply by
scanning the clustered file in one pass, and, while scanning, computing the various groups,
each one with the corresponding avg(size). The cost is 120.000 page accesses.



Problem 5
Let R1(A,B,C,D,E,F) be stored in a heap file with 840.000 tuples, and R2(G,H,L) be stored
in a file sorted on A, with 9.000.000 tuples and with an associated B+-tree index on attribute
G. We assume that every value has the same size, that every page has room for 600 values,
that V (R1,B) = 100, V (R1,F) = 300, and that we have 125 free buffer frames available.
Consider the following query:

select distinct B, G, L

from R1, R2
where F = G and L > 10

and answer the following questions:

1. Illustrate the logical plan associated to the above query expression.

2. Describe the selected logical plan, motivating the annswer.

3. Describe the physical plan you would choose, and determine the cost of executing the
query according the chosen physical plan, motivating the answer.

Solution to problem 5
The logical query plan associated to the query is shown below.

𝛅

R1

Logical query plan

R2

𝜋B,G,L

𝞼L > 10

×

After pushing selection, duplicate elimination and projections we have the following log-
ical query plan:



𝛅

R1

Logical query plan

𝜋B,G,L

𝞼L > 10

F = G

𝜋B,F

R2

𝜋G,L

Note that duplicate elimination has not been pushed through the branch of R2, because
the right-hand side operand of the join contains a key of the relation, and therefore does
not have duplicates. Note alse that after duplicate elimination we cannot have more that
V (R1,B) × V (R1,F) = 30.000 tuples. The number of tuples of the various nodes of the plan
is shown here:

𝛅

R1

Logical query plan

𝜋B,G,L

𝞼L > 10

F = G

𝜋B,F

R2

𝜋G,L

840.000

30.000

280.000

9.000.000

9.000.000

3.000.000

30.000



The number of pages is shown here:

𝛅

R1

Logical query plan

𝜋B,G,L

𝞼L > 10

F = G

𝜋B,F

R2

𝜋G,L

8.400

100

2.800

45.000

10.000

3.334

100

Here is the physical query plan:

TableScan(R1)

one pass
projection

TableScan(R2)

one pass
projection

two pass
duplicate elimination

using 125 frames
one pass
selection

one pass
projection

one pass join
using 125 frames

8.400

2.800

100

45.000

10.000

3.334

whose cost is: 8.400 (reading of R1) + 45.000 (reading of R2) + 2.800 (writing of the 2.800
/ 125 = 23 sublists) + 2.800 (reading of the 23 sublists) = 59.000.


