Data Management — exam of 11/06/2020

Problem 1

If S is a schedule on transactions T7,...,T,, then the partial precedence graph PPG(S) associated to
S is a graph that has the transactions in S as nodes, and has an edge from 7T; to T} if and only if S
contains two actions of different types (i.e., one read and one write) a;(x) in 7; and a;(x) in T; on the
same element x such that a;(x) precedes (not necessarily directly) a;(x) in S. Also, the write-on graph
WOG(S) associated to S is a graph that has the transactions in S as nodes, and has an edge from T;
to T} if and only if there is an x such that w;(z) is followed by w;(z) in S, and there is no write action
on z in S between w;(z) and w;(z). Prove or disprove the following claims:

1. If both PPG(S) and WOG(S) are acyclic, then S is view-serializable.
2. If PPG(S) is acyclic, and WOG(S) has no edges, then S is conflict-serializable.

Problem 2 Let R be a relation with 10.000.000 tuples, each with 50 attributes, occupying 1.000.000
pages, and let us consider the operation of searching for all the tuples of R with a given value for the
non-key attribute A, knowing that A contains 100 values uniformly distributed over the tuples of R.
We consider three methods for representing R in secondary storage: (1) R is stored as a sorted file with
search key A, (2) R is stored as a heap file with an associated sorted index using alternative 2 with
search key A, and (3) R is stored as a sorted file with search key A with an associated sorted index
using alternative 2 with search key A. Under the assumption that each value and each pointer occupy
the same space, tell which is the cost (in terms of number of page accesses) of the search operation in
the cases corresponding to the three methods specified above.

Problem 3
Consider the relations R(A,B,C,D,E,F) and Q(C,D), where R is stored in 20.000 pages of a heap file
with an associated BT-tree index with search key (A,B), Q is stored in 600 pages of a heap file, each
page contains 20 tuples of R, each attribute and each pointer occupy the same space, and we know
that there are 150 available frames in the buffer. Consider the following query

select A from R where A not in (select C from Q)

union

select C from Q where C not in (select A from R)
Show the logical query plan associated to the query, as well as the logical query plan and the physical
query plan you would choose for executing the query efficiently. Also, tell which is the cost (in terms
of number of page accesses) of executing the query according to the chosen physical query plan.

Problem 4
Given the two relations Ry (A,B,C) and Ry (C,D), the following equivalences were intended to be used
during the optimization of logical query plans involving R; and Ry:

1. If Ry or Ry (or both) is a bag, i.e., may contain duplicates, then 6(R; > Ry) = 6(Ry) > §(Rg).
2. If Ry and Ry are sets, then §(mp B c(Ri ™ R2)) = mp B, c(R1 > Ra).

For each of the above equivalences, prove or disprove, explaining your answer in details, that it is
valid, and can indeed be used in query optimization. We remind the students that ¢ denotes duplicate
elimination, 7 denotes projection (without duplicate eliminations) and < denotes natural join, i.e.,
the join of two relations based on equality on common attributes.

Problem 5

Let R;(A,B,C,D) and Ry(A,B,C,D) be two relations stored in two heap files with B(R;) and B(Rs)
pages, respectively. We know that B(Ry) < B(Ry), B(Ri) > K, and B(Ry) > K, where K is the number
of available frames in the buffer. We have to compute the intersection of R; and Rs, in four different
scenarios: (a) both Ry and Ry are sets; (b) Ry is a set and Ry is a bag; (¢) Ry is a bag and Ry is a set;
(d) both Ry and Ry are bags. For each of the above scenarios, tell whether the “classical block-nested
loop algorithm” can be used or not; if the answer is negative, then motivate the answer in detail, and
if the answer is positive, then briefly describe the algorithm and its cost (in terms of number of page
accesses). We remind the students that the “classical block-nested loop algorithm” reads all the pages
of the outer relation in blocks, and for each block, it reads all the pages of the inner relation, and while
doing this, it does not execute any write operation other than the writes of the pages of the result.



