Data Management — AA 2017/18 — exam of 12/01/2018

Problem 1

We have to compute the bag difference between the two tables R(A,B,C) and S(A,B,C), where
each table is stored in a file sorted on <A,B,C>. We know that R occupies 4.000 pages, and S
occupies 5.000. Describe in detail the algorithm you would use to perform the operation, knowing
that you have 100 buffer frames available. Also, tell which is the cost of such algorithm in terms of
number of page accesses, explaining the answer in detail.

Solution of problem 1

The algorithm is trivial: since both relations are sorted on all the attributes, we can compute
the result in one pass, using 3 out of the 100 buffer frames available: one buffer frame Fjg
for reading the pages of R, one buffer frame Fg for reading the pages of S, and one buffer
frame for the output. Whenever we have a tuple t of R under consideration in Fg, we count
the number NS, of occurrences of ¢ in S, by reading from the frame Fg (possibly, loading
other pages of 8, if needed). We then scan all the NR; occurrences of ¢ in R (possibly loading
other pages in Fp, if needed), and we copy NR; — NS; occurrences of ¢ in the output frame
(that is written on disk whenever is full). Obviously, the cost is 4.000 + 5.000 = 9.000 page accesses.

Problem 2
Let R(A,B,C) and S(D,E,F,G) be two relations, where R is stored in 7.500 pages, and the 300.000
tuples of S are stored in 3.000 pages. We know that S has a dense, clustering B* index with search
key E using alternative 2, every value or pointer occupies the same space, and our system has 501
free buffer frames available. Consider the query
select A,B,F,G
from S, R
where E >= 50 and C =D
2.1 Describe the logical query plan associated to the query code.
2.2 Describe the selected logical query plan, explaining why such logical plan has been selected.
2.3 Describe the selected physical query plan, explaining why such physical plan has been selected.
2.4 Tell which is the cost (in terms of number of page accesses) of executing the query according
to the selected physical query plan.

Solution to problem 2
The logical query plan associated to the query code is the following:

TIABFG

OE>=50and C=D

AN

Obviously, we turn the cartesian product into an equi-join. Also, it is immediate to verify that
pushing both selection and projection is beneficial. Thus, we obtain the following selected logical
query plan:



TIABFG

oX —

AN

MpFG R

Og>=50

We now have to decide about the physical query plan. There are two decisions to take: how to
access S, and which algorithm to use for the join.

e As for the access to S, since the index on S is clustered and the access is range-selection, we can
use the index for accessing the S file, and get to the first of the 3.000/3 = 1.000 pages storing
the tuples satisfying the selection operator. These pages can then be scanned to compute the
projection whose size is 1.000 x 3/4 = 750 pages. What is the cost of getting to the right leaf
of the index? As usual, we have to compute the number of leaves and the fan-out of the tree.
Since we know that 300.000/3.000 = 100 tuples (each with four values) of S fit in one page,
we deduce that 100 x 4 /2 = 200 data entries (each of two values) fit in one page, and taking
into account the 66% occupancy rule, we conclude that 133 data entries are stored in each
leaf, and, since the index is dense, we have 300.000/133 = 2.256 leaves of the tree. Also, we
conclude that (200 + 100)/2 = 150 is the fan-out of the tree. Therefore, the cost of getting
to the right leaf is logis 2.256 = 2.

e As for the algorithm to use for the join, we have just seen that the left-hand side operand
has 750 pages. The right-hand side operand will have 7.500 pages. Since we cannot use the
one-pass algorithm, let us consider the following two options (note that in both cases we can
avoid materializing the left-hand side operand):

1. Two-pass algorithm for the join (assuming that we use the algorithm based on sorting):
in this case the cost of the whole query would be as follows: 1.002 4+ 7.500 4+ 2 x (750
+ 7.500) = 25.002, where 1.002 is the cost of using the index, selecting, projecting and
reading the tuples of S in the first pass of the algorithm, 7.500 is the cost of reading
the pages of R in the first pass of the algorithm, and 2 x (750 4+ 7.500) is the cost of
the second pass of the algorithm, where we write the sublists and then read them to
produce directly the result with a final projection operation (as usual, we ignore the cost
of writing the result).

2. Block nested-loop algorithm: in this case the cost would be 1.002 + 7.500 x (1 +
750/500) = 1.002 + 7.500 x 2 = 16.002, where 1.002 is the cost of using the index,
selecting, projecting and reading the tuples of S in two steps of the outer loop, and
7.500 x 2 is the cost of reading the relation R twice (once for every execution of the
outer loop). Note that, as before, we produce directly the result with a final projection
operation while writing the output, and we ignore the cost of writing such result.



It is clear that the block nested-loop algorithm is preferrable, and therefore the physical query
plan will be as follows.

one-pass
projection

block nested-loop join

(501 buffer frames)
one.-pa?ss TableScan(R)
projection

IndexScan(S,A>=50)

Problem 3

Consider the relation TRAVEL (code, agency,country,date,cost), storing information about a set
of travels, where for each travel we have its code (primary key), the agency that organized it, the
country visited during the travel, and the starting date of the travel. The relation has 640.000
tuples stored in a heap file, where each page contains 80 tuples. Consider the aggregate query @)
that, for each agency a, computes the average cost of the travels organized by a, and assume that
we have a good hash function on agency that distributes the tuples of TRAVEL uniformly into 100
buckets. You are asked to describe the algorithm you would use for computing ), and tell which
is the cost of executing the algorithm in terms of number of page accesses, in the following two
scenarios:

3.1 under the assumption that we have only the processor where TRAVEL is stored, with 101 free
buffer frames available;

3.2 under the assumption that we have 100 processors besides the one where TRAVEL is stored,
each one with 90 free buffer frames available.

Solution of problem 3
It is immediate to verify that TRAVEL has 8.000 pages.

3.1 Under the assumption that we have only one processor, with 101 free buffer frames available,
we cannot use a one-pass algorithm, and therefore we opt for a two-pass algorithm based on
hashing. The cost is 3 x 8.000 = 24.000.

3.2 Under the assumption that we have 100 processors besides the one where TRAVEL is stored,
each one with 90 free buffer frames available, we can use the parallel algorithm based on
hashing. We read the pages of TRAVEL in one input frame, and we hash each tuple in order
to distribute all the tuples to the various buckets, i.e., to the various processors, so as to
store (640.000/100)/80 = 80 pages in the buffer at each processor. At each processor, we
then compute the result. The elapsed time can be characterized by the cost of 8.000 page
accesses, i.e., the cost of reading the relation.

Problem 4
Consider the following schedule

S = ri(z) r2(y) wa(w) r3(v) wi(2) wa(v) T1(y) wa2) wo(2) r3(2).

4.1 Tell whether S is a 2PL schedule or not, explaining the answer in detail.



4.2 Construct the precedence graph associated to .S, and tell whether S is conflict-serializable or
not, explaining the answer in detail.

4.3 Describe the behavior of the timestamp-based scheduler when processing the schedule S,
assuming that, initially, rts(a)=wts(a)=wts-c(a)=0, and cb(a)=true for each element a of
the database, and assuming that the subscript of each action denotes the timestamp of the
transaction executing such action.

4.4 Tell whether S is in the class of ACR (Avoiding Cascading Rollback) schedules or not,
and whether S is in the class of strict schedules, explaining the answer in detail for both cases.

Solution of problem 4

It is immediate to verify that the precedence graph associated to S is cyclic, and thus S is not
conflict-serializable, and therefore is not a 2PL schedule. It is also immediate to verify that S
is both in the class of ACR (Avoiding Cascading Rollback) schedules, and in the class of strict
schedules. It is also easy to come up with the description of the behavior of the timestamp-based
scheduler when processing the schedule S.

Problem 5

A schedule is called “conflict-restricted” if it has no conflict of type write-write, and no conflict
of type read-write. Proof or disprove the following claim: every “conflict-restricted” schedule
that is in the class ACR (Avoiding Cascading Rollback) is conflict-serializable.

Solution of problem 5 We prove the claim by showing that any “conflict-restricted” schedule S
that is in the class ACR is conflict-equivalent to the serial schedule built according to the order in
which the various transactions in S commit. We will only use the definition of conflict-equivalent
schedules in the proof.

Let S be a “conflict-restricted” schedule S that is in the class ACR, let T}, ..., T, the transactions
appearing in S, and let S’ be the serial schedule on T1, ..., T, built according to the order in which
the various transactions in S commit. We prove that S is conflict-equivalent to S’ by showing that
every pair of conflicting actions appearing in S appear in the same order in S’.

Let a; be an action on element X of transaction 7, and b; an action on X of transaction Tj.
Assume that a; preceeds b; is S, and that a; and b; are conflicting actions. Since S is “conflict-
restricted”, it must be that b; is the read action 7;(X) and a; is the write action w;(X). Since S
is in ACR, the commit action ¢; must appear between a; and b; is S, and therefore 7; commits
before T; in S. Since S’ is the serial schedule on T7,..., T, built according to the order in which
the various transactions in S commit, it must be that 7; comes before T} in S’, and therefore a;
comes before b; in S’. Since we have shown that S is conflict-equivalent to the serial schedule ', it
follows that S is conflict-serializable, and the claim is proved.



