
Data Management – AA 2016/17 – exam of 06/02/2017

Solutions B

Solution to problem 1
What we can do is to sort each table by means of the 2-way sorting algorithm, and then

compute the result of the difference between the sorted table R and the sorted table S by
means of a variant of the merge algorithm. In this variant, for each tuple t of R, we include
in the result a number of copies of t obtained as the difference between the number of copies
of t in R and the number of copies of t in S (not incuding the tuple in the case where such
difference is negative).

We remind the reader that sorting a table with B pages by means of 2-way sorting costs
2 × B × (log2B + 1) page accesses, while merging two sorted tables of B1 and B2 pages
respectively, requires B1 + B2 page accesses (we ignore as usual the cost of writing the final
result).

Therefore, the whole algorithms costs

2×B1 × (log2B1 + 1) + 2×B2 × (log2B2 + 1) + B1 + B2

page accesses.

Solution to problem 2

1. We disprove the proposition simply by exhibiting the following strange schedule that
is not accepted by the timestamp-based scheduler:

S = r1(x)w2(x)w3(y) r1(y).

2. We prove the proposition by defining a serial schedule S ′ starting from a strange
schedule S, and then showing that S is conflict equivalent to S ′. If S is a strange
schedule, then define the serial S ′ as follows (with h, k,m ≥ 0):

S ′ = T 1
s T 2

s · · · T h
s T 1

r T 2
r · · · T k

r T 1
f T 2

f · · · Tm
f

where

• T 1
s T 2

s · · · T h
s are all the “write only” transactions in S (in any order) that are

not preceeded by any read action on the same element in S,

• T 1
r T 2

r · · · T k
r are all the “read only” transactions in S (in any order), and

• T 1
f T 2

f · · · Tm
f are all the “write only” transactions in S (in any order) that are

not followed by any read action on the same element in S.

To prove that S ′ is conflict equivalent to S, we proceed by showing that every pair of
conflicting actions appearing in S appears in the same order in S ′.

Since no element of the database is written more than once in S, we can concentrate
only on conflicts of type (w, r) or (r, w) in S. Suppose that wi(x) appears before
rj(x) in S; this implies that the transaction Ti constituted by the write action wi(x)
is not proceeded by any read action on x (because no element of the database is read
more than once in S), and therefore, by construction of S ′, Ti appears before the
(only) transaction containing rj(x) in S ′. Suppose that wi(x) appears after rj(x) in
S; this implies that the (only) transaction Ti constituted by the write action wi(x)
is not followed by any read action on x (because no element of the database is read
more than once in S), and therefore, by construction of S ′, we have that the (only)
transaction Ti constituted by the action wi(x) appears after the transaction containing
rj(x) in S ′. This shows that any pair of conflicting actions appearing in S appear in
the same order in S ′, and therefore, S and S ′ are conflict serializable.



3. We prove the proposition simply by noticing that, since every strange schedule is
conflict serializable, and every conflict serializable schedule is also view serializable, it
follows that every strange schedule is view serializable.

Solution to problem 3

5.1 S is not a 2PL schedule, because transaction 2 should unlock x in order to allow
transaction 3 to write on x. Therefore, in order for S to follow the 2PL protocol,
transaction 2 should acquire the exclusive lock on u (needed for the last write of S)
before unlocking x. But if this happens, transaction 4 will not be able to read u.

5.2 S is conflict-serializable, as can be easily seen from the fact that the precedence graph
associated to S is acyclic. It follows that S is view serializable.

5.3 The behaviour of the timestamp-based scheduler when processing S is as follows:

r1(z) → OK, rts(z)=1
r1(y) → OK, rts(y)=1
w3(y)→ OK, wts(y)=3, cb(y)=false

r1(x)→ OK, rts(x)=1
r2(x)→ OK, rts(x)=2
c1 → OK,
w4(z)→ OK, wts(z)=4
w2(x)→ OK, wts(x)=2, cb(x)=false

w3(x)→ OK, transaction 3 suspended
r4(u)→ OK, rts(u)=4
c4 → OK, wts-c(z)=4, cb(z)=true

w2(u)→ write too late, transaction 2 rollbacks
w3(x)→ OK, wts(x)=3
c3 → OK, wts-c(x)=3, cb(x)=true

5.4 S is ACR, because no transaction reads from another transaction in S.

Solution to problem 4
Each page has space for 600/60 = 10 tuples of R, and therefore R is stored in a heap with
1.400.000/10 = 140.000 pages. Similarly, each page has space for 600/100 = 6 tuples of Q,
and therefore Q is stored in a heap with 2.400.000/6 = 400.000 pages.

Note that the B+-tree index on (E,F), where (E,F) is the key of Q, is unclustering, and
therefore dense. Since each page has space for 600/40 = 15 data entries of such index,
taking into account the 67% occupancy rule, we know that each page contains 10 data
entries, implying that the B+-tree index has 2.400.000/10 = 240.000 leaf pages.

Notice that 400 × 400 = 160.000, and that 140.000 < 160.000. Notice also that the
query requires to compute the union (without duplicates) between the sorted projection of
R on A,B and the sorted projection Q on E,F. Also, observe that the sorted projection Q on
E,F is directly available in the leaves of the B+-tree index on Q with search key (E,F). It
follows that in order to compute the result of the query, we can use a variant of the two-pass
algorithm for set union based on sorting, by first producing the sorted sublists for R, and
then applying the second pass to compute the union without duplicates using directly the
leaves of the B+-tree index on Q) with search key (E,F).

More precisely, the algorithm and the corresponding cost is as follows:



Pass 1 Read R, and whenever we have 399 pages of R in the buffer, sort such pages, and
using one buffer frame, write the projection on A,B of the tuples contained in such
pages, thus producing a sorted sublist of R. Note that the size of the projection of R

on attributes A,B is 1.400.000/ (600/40) = 93.334. Therefore pass 1 requires to access
140.000 pages for reading R, and 93.334 pages for writing the 140.000/399 = 359 sorted
sublists containing the projection of R on attributes A,B.

Pass 2 Use the 400 free buffer frames for loading one page at a time of the sorted sublists of
the projection of R on attributes A,B, and one page at a time of the leaves of the B+-
tree index on Q with search key (E,F). At each stage, we analyze the first (according to
the sorting) tuple stored in the pages devoted to the projection of R, and we write one
copy (ignoring the other copies) of such a tuple in the output frame only if it appears
in the page devoted to the leaves of the B+-tree index. If, on the contrary, such a
tuple does not appear in the page devoted to the leaves of the B+-tree index, then we
ignore all its copies without writing any of them in the output frame. During such a
process, whenever the output frame is full, we copy it in the file corresponding to the
final result. Pass 2 requires to read 93.334 + 240.000 pages.

The total cost of the algorithm is 140.000 + 93.334 + 93.334 + 240.000 = 566.668 page
accesses, where, as usual, we have ignored the cost of writing the final result.

Solution to problem 5
Since Q has 10.000 tuples and two attributes, each of 20 Bytes, and the size of each page is
400 Bytes, the number of pages of Q is 10.000 × 2 × 20 / 400 = 1.000. Since R has 400.000
tuples and four attributes, each of 20 Bytes, the number of pages of R is 400.000 × 4 × 20
/ 400 = 80.000.

1. If R is represented as a heap file, then the query can be answered by means of a block
nested-loop algorithm, where we load relation Q in blocks, each of 250 pages, and for
each block b we scan relation Q to find the tuples in b that satisfy the where condition
(we use one buffer frame among the 252 free frames available for reading R, and one
for producing the output). The cost is then 1.000 + (1.000 / 250) × 80.000 = 321.000
page accesses.

2. If R is represented as a sorted file, then the query can be answered by scanning the
tuples of Q, and for each tuple t1 of Q, using binary search for checking whether there
exists a tuple t2 in R such that t1.F = t2.B, and including t1 in the result if such check
fails. The cost is then 1.000 + 10.000 × log2 80.000 = 171.000 page accesses.

3. If R is represented as a heap file with unclustering, dense sorted index with duplicates
(i.e., strongly dense, which means that we have one data entry per data record) with
search key B, then the query can be answered by means of an index-based index algo-
rithm that scans the tuples of Q, and for each tuple t1 of Q uses the sorted index for
checking whether there exists a tuple t2 in R such that t1.F = t2.B, including t1 in the
result if such check fails. Since the index is unclustering, is dense, and has duplicates,
it has one data entry for each tuple in R, i.e., it has 400.000 data entries. Each data
entry requires 2 × 20 = 40 Bytes, and therefore each page has 10 data entries, and
the number of pages of the index is 40.000. It follows that the cost is 1.000 + 10.000
× log2 40.000 = 161.000 page accesses.

4. If R has a clustering, dense sorted index without duplicates (i.e., we have one data entry
for each vale of the search key) with search key B, then the query can be answered by
means of an index-based algorithm, as before. Since the index is clustering and dense,
it can avoid duplicates, and therefore it has one data entry for each value in B, i.e.,
2.000. Since each page has 10 data entries, as we saw before, the number of pages of



the index is 2.000/ 10 = 200. It follows that the cost is 1.000 + 10.000 × log2 200 =
81.000 page accesses.

5. If R has a clustering, sparse sorted index with search key B, then the query can be
answered again by means of an index-based index algorithm, as before. Since the
index is clustering and sparse, it has one data entry for each page of R. Since each
page has 10 data entries, as we saw before, the number of pages of the index is 80.000
/ 10 = 8.000. Note that in this case, after accessing the index, we have to follow the
pointer to the data file, since the index is sparse. It follows that the cost is 1.000 +
10.000 × (log2 8.000 + 1) = 141.000 page accesses.


