
Data Management – AA 2014/15 – exam of 30/1/2015

Problem 1
Let R and S be two relations (bags of tuples), stored in 100.000 pages, and 50.000 pages, respectively.
Suppose our buffer has 400 frames available. Describe in detail (step by step) the algorithm you would
use to compute the “bag intersection” of R and S, and tell which is the cost of the algorithm in terms
of page accesses (ignoring, as usual, the cost of producing the output).

Problem 2
Let O be a total order on the transactions T1, T2, . . . , Tn, and let Th <O Tk denote the fact that
Th comes before Tk according to O. Let P be the concurrency strategy defined for schedules on
transactions T1, T2, . . . , Tn as follows: a schedule S is accepted by P if and only if (i) no action wj(x) in
S precedes an action ri(x) in S with Ti <O Tj, and (ii) no action wj(x) in S precedes an action wi(x) in
S with Ti <O Tj. Prove or disprove the following claim: every schedule accepted by P is view serializable.

Problem 3
Consider the following schedule S, where we assume that the timestamp of each transaction Ti is i:

r4(y)w1(z) r2(y)w3(x)w1(y) r1(x) r3(z) c3w5(z) c2w5(y) c5w4(z) c1 r4(x) c4

You are asked to:
• Illustrate the various steps carried out by the timestamp-based scheduler when analyzing the

above schedule.

• Tell whether the above schedule is conflict serializable.

• Tell whether the above schedule is in 2PL with shared and exclusive locks.

• Tell whether the above schedule is recoverable.

Problem 4
(i) Discuss the methods for storing and managing non-clustering sorted index with duplicates. (ii)
Suppose we have a relation R with 100.000 tuples, where R has 5 attributes (called A,B,C,D and E), each
attribute is of size 10 bytes, and for each value of A, R contains 2 tuples with that value. Assuming that
the size of each page is 1000 bytes, tell which is the number of page accesses needed for searching for
all tuples of R with value V in attribute A in the following two scenarios:

1. R has no index, and is sorted on A;

2. for R there is a non-clustering sorted index with duplicates on attribute A.

Problem 5
Consider the relation Engineer(code,department,lastname,age,role), which stores information
about engineers, where code,department form the key. The most frequent queries posed to such
relation are:

• Produce the sorted list of code, department, and last name of all engineers, without duplicates;

• Given a code and a department, find the age and the role of the engineer with the given code and
the given department.

We know that relation Engineer has 14.000.000 tuples, the size of every memory page is 11.200 B, and
the size of each field (relation attribute, or pointer) is 20 B.

Tell which method would you choose for representing the relation in secondary storage, taking into
account that your goal is to execute the above queries efficiently. Also, for each query, tell which
algorithm would you choose for executing the query, and how many page accesses would be needed for
computing the answer to the query, given the chosen algorithm.


