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Abstract

This work presents a method for tracking multiple moving objects from noisy
and unreliable data taken by a mobile robotic platform. We develop a multi-
hypothesis tracking algorithm based on Kalman filtering. The approach is im-
plemented on a four-legged AIBO robot and tested in the context of multiple-balls
tracking in the RoboCup domain, with features extracted from the vision module.

1 Introduction

The successful operations of a robotic agent are strictly dependent on the knowledge
about the world that the agent is able to acquire. An accurate knowledge of the sur-
rounding environment can be used to improve the robot’s behavior and make better
decisions. The kind of knowledge that a robot require depends on the kind of environ-
ment in which it has to operate and the kind of tasks it has to accomplish.

For many application domains, the robot is required to estimate and update the state
of several objects present in the scene. For example, choosing the right object to grasp
in the presence of a set of objects in the environment, requires knowledge of all the
objects’ locations and trajectories.

The process of estimating object’ s properties over time is usually referred to as
object tracking. The difficulty of the object tracking problem depends on a number of
factors, such as how accurately the robot can estimate its own motion, the predictabil-
ity of the object’ s motion, the accuracy of the sensors being used. Moreover the data
acquired are often incomplete, because of physical limitations of the sensors, but also
because often some of the components of interest of the vector state are not directly
measurable and have to been calculated. Particularly, in the case of multi-tracking,
there are further difficulties due to tracks management and the problem of establishing
which is the object which determined the received report (Data Association).
Object tracking is a very well known and deeply studied area, and it has several appli-
cation domains such as security, surveillance, military applications, etc...
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This work focuses on the problem of multi-object tracking with unreliable sensors.
In particular our goal is to track the location of n balls with a four-legged AIBO robot
in the RoboCup domain, which aims at playing soccer with teams of mobile robots.
This domain poses highly challenging target tracking problems due to:

• the dynamics of the soccer game: the ball frequently bounces off the borders
of the field or gets kicked by other robots; such interactions between target and
environment result in non-linear motion of the ball;

• limited processing power, which poses computational constraints on the tracking
problem and requires an efficient solution;

• low sensors’ quality, which provides unreliable and noisy distance measurements
for the ball;

• presence of systematic and not predictable errors.

Our approach is a multi-hypothesis Kalman Filter. The input to our method con-
sists of features extracted from the vision system of the robot. The technique used
applies Kalman filters to estimate the state of each target. This provides highly effi-
cient state estimates, satisfying the computational constraints. Although Kalman Filter
is restricted to representing unimodal probability distributions and estimating the state
of linear systems, a multiple-hypothesis tracking allows to represent multi-modal dis-
tributions and to manage the non-linearities present in the ball’ s motion. The choice of
this approach derives from the requirements of our application. In particular, our aim
is not to obtain a perfectly accurate target’ s state estimate, but to develop an efficient
solution to the multi-tracking problem for an high number of targets and that allows to
manage the unpredictable systematic errors, which can occur during the game.
In addition, notice that since we apply the fusion process at feature level, the proposed
solution is general and can be easily applied to other domains or other kinds of objects
(e.g., opponents’ position in the robocup field).

This paper is organized as follows. In Section 2 we describe in details the technique
used; Section 3 presents the implementation choices in the application scenario and the
experimental results.

2 Multiple-Hypothesis Kalman Filter

When developing a multi-object tracking method, one usually has to deal with track
initiation, track update including prediction and data association and track deletion.
The process is divided into two fundamental steps:

1. association: assignment of each incoming report to a specific target track;

2. estimate: the received report is used to provide a state estimate of the associated
track.

In what follows we will first describe the state estimate using a Kalman Filter and then
its extension with a Data Association algorithm and tracks management methods.
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2.1 Kalman filtering

A Kalman Filter is an optimal recursive data processing algorithm [1]. Such a filter [2]
represent an efficient solution to the general problem of estimating the state x ∈ <n of
a discrete-time controlled process that is governed by the linear stochastic difference
equation:

xt = Fxt−1 + Gut−1 + wt−1 (1)

where xt is the vector state and ut is a known input vector, with a measurement z ∈ <m

that is:
zt = Htxt + vt (2)

The random variables wt and vt represent the process and measurement noise (re-
spectively). They are assumed to be independent, white and with normal probability
distributions

p(w) ∼ N (0, Q) (3)

p(v) ∼ N (0, R) (4)

where Q and R are, respectively, the process noise covariance and the measurement
noise covariance.
The Kalman Filter algorithm consist of essentially two stages:

1. prediction (or time update):

x̂−

t = F x̂t−1 + Gut−1 (5)

P−

t = FPt−1F
T + Q (6)

where x̂−

t and P−

t are the vector state and covariance error a priori estimates for
the next time step.

2. update (or measurement update): the new report zt is incorporated into the a
priori estimate to obtain an improved a posteriori estimate, according to the
following equations.

Kt = P−

t HT (HP−

t HT + R)−1 (7)

x̂t = x̂−

t + Kt(zt −Hx̂−

t ) (8)

Pt = (I −KtH)P−

t (9)

Kt is the filter’ s gain, which represent the degree to which the measurement is incorpo-
rated in the new estimate [3], providing an indicative measure of the filter’ s accuracy.
After each time and measurement update pair, the process is repeated with the previ-
ous a posteriori estimates used to project or predict the new a priori estimates. This
recursive nature of the filter allows a sequential processing of the received data, so that
it is not necessary to store the complete data set nor to reprocess existing data if a new
measurement becomes available [4].
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2.2 Tracks management

To keep track of a variable ad unknown number of moving objects we use a set of
Kalman Filters. Each time a new observation is received, it must be associate to the
correct track among the set of the existing tracks, or, if it represents a new target, a
new track must be created. Thus, the tracking system needs some mechanisms of Data
Association and tracks management (see [5]), that we will describe in this section.

2.2.1 Data Association

The technique used for the data association is the Nearest Neighbors rule, which is
the simplest approach for determining which tracked object produced a given sensor
report. When a new report is received, all existing tracks are projected forward to the
time of the new measurement. Then the report is assigned to the nearest such estimate.
More generally, the distance calculation is computed to reflect the relative uncertainties
(covariances) associated with each track and report. The most widely used measure of
the correlation between two mean and covariance pair {x1, P1} and {x2, P2}, which
are assumed to be Gaussian-distributed random variables, is:

Pass(x1, x2) =
exp (− 1

2
(x1 − x2)(P1 + P2)

−1(x1 − x2)
T )

√

2π | (P1 + P2) |
(10)

If this quantity is above a given threshold, the two estimates are considered to be feasi-
bly correlated. A report is assigned to the track with which it has the highest association
ranking. In this way, a multiple-target problem can be decomposed into a set of single-
target problems.

2.2.2 Track formation

The nearest-neighbors rule is very simple and intuitive, but presents some difficulties.
A first problem is in creating initial tracks for multiple targets, because some compo-
nents of the vector state are not directly measurable. In the case of a single target, two
reports can be accumulated to derive an estimate of such components. For multiple
target, there’ s no obvious way to deduce such initial values: the first two reports could
represent successive position of a single object or the initial detection of two distinct
objects. Every subsequent report could be the continuation of a known track or the start
of a new one.
So when a new report is obtained, if it is not highly correlated with an existing track, a
new track is created and a new Kalman filter is initialized with the position (x, y) ob-
served and giving to all the not observed components (e.g., velocity) a null value with
a relatively high covariance. If the subsequent reports will confirm the track existence,
the filter will converge to the real state.

2.2.3 Track deletion

In many cases, some objects are not observed for a while, with the uncertainty in the
state estimate increasing. Moreover the presence of noisy sensors can determine spu-
rious reports, which give rise to spurious tracks. Thus, the tracking system needs an
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additional mechanism to recognize and delete tracks that do not receive any subsequent
confirming reports.
We have considered, as indicative measure of the uncertainty in the state estimate of
each target, the filter’ s gain relative to the track:

Kt = P−

t HT (HP−

t HT + R)−1 (11)

and experimentally established a threshold for the track deletion: if the received reports
do not confirm a certain track for a period of time the gain’ s value grows exceeding
the threshold and determining the track deletion.

2.2.4 Track splitting

When two object are sufficiently close together, the observations are highly correlated
with more than one track. In these cases a missassignment can cause the Kalman-
filtering process to converge very slowly, or fail to converge altogether. Moreover,
tracks updated with missassigned reports (or not updated at all) will tend to correlate
poorly with subsequent reports and may, therefore, be mistaken as spurious by the track
deletion mechanism; mistakenly deleted track then necessitate subsequent track initia-
tion and a possible repetition of the process.
The choice of a multi-hypothesis tracking has been made to give a solution to the prob-
lem of assignment ambiguity: when the correct association is not known, more asso-
ciation hypothesis are created. The new observation received is used to update all the
tracks with which it has a probability association that exceed the threshold value. A
copy of the not updated track is also maintained (track splitting). Subsequent reports
can be used to determine which assignment is correct.

2.2.5 Track merging

One important issue of the track splitting technique is a proliferation in the number
of tracks. Because track splitting does not decompose a multiple-target tracking into
independent single-target problems, the deletion mechanism described in section 2.2.3
is not sufficient. For example, two hypothesis tracks may lock onto the trajectory of
a single object; because both tracks are valid, the standard track-deletion mechanism
cannot eliminate either of them.
The deletion procedure has to be modified to detect redundant tracks and, therefore,
cannot look at just one track at a time. At each step, for each track the correlation
with all the other tracks is calculated using equation (10). If the association probability
between two tracks exceeds a threshold (experimentally established), one of the two
tracks is deleted, keeping only the most significant hypothesis.

3 Experimental Results

To evaluate the effectiveness of our approach, we implemented our algorithm on the
Sony AIBO Ers7 for a multiple-balls tracking in the Robocup domain and carried out
a series of experiment with real data. These experiments demonstrate that our tracking
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system can keep track of all the ball in the field, even in situation of association ambi-
guity and in presence of non-linearities of the ball’ s motion.

3.1 Implementation Details

As we said we considered the tracking of an unknown and variable number of balls by
a robot.
The observation model is a random variable xs = (x, y, θ, v, w) with mean x̂s and
covariance Σs, where (x, y) is the position, θ is the heading, v is the translational
velocity and w is the rotational velocity (which is zero in the case of the ball). We
assume that Σs is a constant diagonal matrix

Σs = diag(σ2

x, σ2

y , σ2

θ , σ2

v , σ2

w)

where σ2

x, σ2

y , σ2

θ , σ2

v and σ2

w are constant standard deviation for position, heading and
velocity, determined through experiments. When initiating a new track a new Kalman
Filter is created, setting its state to:

x̂r = (x, y, 0, 0, 0) (12)

Σr = Σr0
(13)

where
Σr0

= diag(σ2

x, σ2

y, σ2

θ0
, σ2

v0
, σ2

w0
)

with σ2

θ0
, σ2

v0
and σ2

w0
are relatively high initial standard deviation for heading and

velocity.
For predicting the state of a track we use a simple motion model, where we assume that
the ball moves with constant speed. Given the time interval t, between two frames, the
track is projected according to:

x̂r ←− Fs(x̂r , t) =













x̂r + cos(θ̂r)v̂rt

ŷr + sin(θ̂r)v̂rt

θ̂r + ŵrt

v̂r

ŵr













Σr ←− ∇FsΣr∇Fs
T + Σa(t)

where∇Fs is the Jacobian of Fs and Σa(t) is the covariance of some additive Gaussian
noise with zero mean:

Σa(t) = diag(σ2

xa
t, σ2

ya
t, σ2

θa
t, σ2

va
t, σ2

wa
t)

with σ2

xa
, σ2

ya
, σ2

θa
, σ2

va
and σ2

wa
being some constant standard deviation determined

through experiments.
When a new measurement x̂s arrives which correspond to the track x̂r we fuse obser-
vation and track according to:

x̂r ←− (Σ−1

r + Σ−1

s )
−1

(Σ−1

r x̂r + Σ−1

s x̂s) (14)

Σr ←− (Σ−1

r + Σ−1

s )−1 (15)
In Table 1 is shown the tracking algorithm in detail.
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Inputs:
T = (t0, t1, ..., tM ) set of tracks
zk observation

while (no observations)
∀ti ∈ T :

evolve ti;
calculate Kti

;
if (Kti

> gain threshold) kill ti;
∀ti ∈ T :

∀tj ∈ T :
if (i 6= j){ calculate Pass(ti, tj);

if (Pass(ti, tj) > redundant track threshold)
kill ti;}

if (zk received):
if (T = ∅) create a new track;
else
Tzk

:= ∅; // set of tracks associated with zk

∀ti ∈ T :
calculate Pass(zk, ti);
if (Pass(zk, ti) > pa-threshold) add ti to Tzk

if (|Tzk
| > 1)∀ti ∈ Tzk

:
splitting: not updated copy of ti added to Tk;
ti update with zk;

else if (|Tzk
| = 1) ti update with zk

else create a new track;

Table 1: Multi-hypothesis multi-tracking algorithm

3.2 Experiments

The tracking system has been tested on real data extracted with the vision software of
the robot. We will present in this section some significant situations.

In Fig. (1) we have the representation of the x values over time of two balls.
The experiment demonstrate that the tracking system can keep track of more moving
objects, also in presence of a slight non-linearity. Moreover it shows how spurious
tracks are managed with the creation of new tracks early deleted because of the absence
of confirming reports.

The experiment in Fig. (2) shows two crossing balls (x over time). In this case the
multi-hypothesis approach allows a correct tracking also in the crossing point where
there’s a high association ambiguity. Moreover we can see how the non linearity is
managed: two tracks, corresponding to the two linear parts, are created.

Finally the Fig. (3) shows on the xy plane a not moving ball and two other balls
with crossing trajectories. The system is able to keep track of all the three balls creating
more association hypothesis in the crossing point. In this case the stopped ball could
represent a systematic error (e.g., a robot of the red team seen as an orange object,
and thus recognized as a ball, because of changes in the lighting conditions): with the
knowledge of all the three trajectories, it can decide to consider the ‘more dangerous’
ball.
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Figure 1: Multi-tracking
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Figure 2: Non-linearities management
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Figure 3: Crossing trajectories
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In conclusion, the experiments showed that:

• the implemented system keeps track of the state of all the objects for which
observations are received;

• the spurious reports due to noisy sensors are filtered;

• the mechanism of tracks management compensates for Kalman Filtering limita-
tions in presence of non-linearities;

• the tracking system allows systematic errors management.
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