
An Exact Algorithm for Quadratic Integer
Minimization using Nonconvex Relaxations

Christoph Buchheim
Marianna De Santis
Laura Palagi
Mauro Piacentini

Technical Report n. 5, 2012

An Exact Algorithm for Quadratic Integer

Minimization using Nonconvex Relaxations ∗

Christoph Buchheim† Marianna De Santis‡ Laura Palagi§ Mauro Piacentini§

May 23, 2012

Abstract

We propose a branch-and-bound algorithm for minimizing a not
necessarily convex quadratic function over integer variables. The al-
gorithm is based on lower bounds computed as continuous minima of
the objective function over appropriate ellipsoids. In the nonconvex
case, we use ellipsoids enclosing the feasible region of the problem. In
spite of the nonconvexity, these minima can be computed quickly. We
present several ideas that allow to accelerate the solution of the contin-
uous relaxation within a branch-and-bound scheme and examine the
performance of the overall algorithm by computational experiments.

∗This work was partially supported by the Vigoni Project 2010 “Exact Methods for
Integer Non Linear Programs”

†Fakultät für Mathematik, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Ger-
many – email: christoph.buchheim@tu-dortmund.de

‡Istituto di Analisi dei Sistemi e Informatica Antonio Ruberti – IASI CNR, Viale
Manzoni 30, Roma, Italy – email: mdesantis@dis.uniroma1.it

§Department of Computer, Control, and Management Engineering Antonio Ru-
berti – Sapienza Università di Roma, Via Ariosto 25, Roma, Italy – email:
{palagi,piacentini}@dis.uniroma1.it

1

1 Introduction

Motivated by the progress made in recent decades both in nonlinear op-
timization and in integer programming, the focus of research has recently
moved to the study of mixed-integer nonlinear optimization problems. These
problems are usually hard to be solved (in theory and in practice) by the
presence of two types of nonconvexity: first, the objective function or con-
straints can be nonconvex, and second, the presence of integer variables
makes the domains of the variables nonconvex.

We address quadratic integer optimization problems with box constraints,

z∗I = min q(x) = x�Qx+ L�x
s.t. lj ≤ xj ≤ uj (j = 1, . . . , n) (1)

x ∈ Z
n ,

where we may assume l < u and l, u ∈ Z
n. Recently, a fast branch-and-

bound algorithm for the convex special case of Problem (1) has been pro-
posed by Buchheim et al. [7]. Its main features are a fast incremental compu-
tation of lower bounds given by unconstrained continuous minimizers and an
improvement of these bounds by considering lattice-free ellipsoids centered
in the continuous minimizers. More precisely, the improved lower bound is
given as the minimum of the objective function over the boundary of this
ellipsoid, which can be computed efficiently.

For a nonconvex objective function, this approach is not feasible any
more; the unconstrained continuous minimizer does not even exist in this
case. Moreover, even the continuous relaxation of this problem,

min q(x) = x�Qx+ L�x
s.t. lj ≤ xj ≤ uj (j = 1, . . . , n)

x ∈ R
n

is an NP -hard problem in the case Q �� 0; it is equivalent to the so-called
BoxQP problem [24].

In this paper, we present a novel approach for computing lower bounds
in the nonconvex case, which tries to exploit the same interesting features
used by Buchheim et al. [7] in the convex case. The main ingredient in
the algorithm is the definition and solution of an appropriate continuous
relaxation of Problem (1). We embedded this relaxation into a branch-and-
bound framework in order to obtain an exact algorithm for general integer
quadratic optimization problems. Experiments with various types of ternary

2

instances show that this approach is competitive with other methods for
integer quadratic optimization, or even yields significantly faster running
times for larger instances.

Different from [7], we choose an ellipsoid E that contains all feasible
solutions of Problem (1),

[l, u] ⊆ E = {x ∈ R
n | (x− x0)�H(x− x0) ≤ 1}

where H � 0 and x0 denotes the center of the ellipsoid. We then define a
relaxation of Problem (1) as

min q(x) = x�Qx+ L�x (2)

s.t. x ∈ E .

This idea goes back to Kamath and Karmarkar [15, 16]. They consider the
problem of minimizing a quadratic indefinite form (i.e. with L = 0) over
{−1, 1}n and obtain a lower bound by solving the generalized eigenvalue

problem min x�Qx
x�Hx

by means of suitable interior point methods.
A crucial aspect for obtaining a tight bound from Problem (2) is the

choice the ellipsoid E. E.g., if lj = −1 and uj = 1 for all j = 1, . . . , n, a
straighforward choice is the sphere

E = {x ∈ R
n | ‖x‖ ≤ √

n} ,

which corresponds to H = 1
nI and x0 = 0. However, different choices of the

positive definite matrix H and of the center x0 yield different bounds and
can have a strong impact on the efficiency of the overall algorithm.

For Problem (2), strong Lagrangian duality holds; see e.g. [31, 26]. Hence
we can also use the dual formulation to obtain a solution. Switching to the
dual problem has the advantage that even an approximate solution repre-
sents a safe lower bound to be used in a branch-and-bound framework. For
this reason, we solve the primal formulation only in a preprocessing phase,
while we use the dual formulation at each node of the branching tree. By
the integrality constraints, instances with 50–100 variables can already be
considered very challenging, different from a pure continuous optimization
context. For solving the primal problem, we can thus use the approach
of Lucidi and Palagi [19], while for the dual formulation we can use the
algorithm of Moré and Sorensen [22].

As in [7], our enumeration strategy is depth-first and we always branch
by fixing the value of one of the n variables. A crucial property of our
algorithm is that we restrict the order in which variables are fixed. In other

3

words, the set of variables fixed only depends on the depth of the node in the
tree. We thus loose the flexibility of choosing the best branching variable,
but this strategy allows us to process a single node in the tree much faster.
This is due to the fact that only n different matrices Q appear in the tree
in this case, so that many time-consuming calculations can be done in a
preprocessing phase.

This paper is organized as follows. In Section 2, we describe the basic
idea of our approach for computing lower bounds using axis-parallel ellip-
soids. In Section 3, we propose different strategies for choosing these el-
lipsoids. The main components of the overall branch-and-bound algorithm
are discussed in Section 4. Finally, Section 5 contains the results of an
experimental evaluation of this algorithm.

1.1 Related Work

Most software developed for integer nonlinear optimization can guarantee
global optimality of the computed solutions only if the problem is con-
vex [3, 14, 7]. This is due to the fact that the underlying algorithms rely on
solving continuous relaxations of the integer problems to proven optimality,
which in a general situation requires convexity. For nonconvex objective
functions, Buchheim and Wiegele [6] propose a branch-and-bound approach
based on SDP-relaxations of Problem (1). In case of a convex objective
function, this SDP bound improves over the bound given by the continuous
relaxation of the problem. Numerical experiments are reported for various
types of nonconvex instances, showing that this approach outperforms other
software such as Couenne [1]. Another approach for mixed-integer quadratic
optimization was recently devised by Saxena et al. [28]. This approach uses
cutting planes derived from the positive semidefiniteness of the matrix xx�.

An important special case of Problem (1) arises when all variables are
binary. In this case, (1) is equivalent to the well-studied Max-Cut problem.
The latter problem has been addressed by both integer programming (IP)
and SDP based methods; see [23] for recent advances and further references.
These methods strongly rely on the binarity of variables, so that a general-
ization to larger domains is not straightforward. This is true in particular
for IP based approaches. In the SDP context, the algorithm of [6] can be
considered a generalization of the corresponding Max-Cut techniques.

Most literature on nonconvex quadratic minimization does not deal with
integrality constraints. For the BoxQP problem, again both SDP based
approaches and approaches using linear constraints have been examined. In
particular, an effective set of valid linear inequalities is given by the so-called

4

RLT-inequalities [21, 29]. Fast algorithms for BoxQP based on semidefinite
programming have been devised by Vandenbussche and Nemhauser [32] and
by Burer [8].

All approaches for quadratic optimization discussed above share two fea-
tures: the original problem (1) is first linearized by adding one new vari-
able xij for each product xixj of original variables. Second, the relaxations
used to compute lower bounds are all convex. In fact, the aim of obtaining
convex relaxations is the basic motivation to linearize the problem in the
first step. However, this usually leads to a large number of new variables.

There are also approaches based on nonconvex quadratic relaxations.
Among them we mention the seminal paper of Kamath and Karmarkar
[16], proposing for the first time to approximate the feasible region by an
ellipsoid. However, they do not examine the quality of the resulting bounds
and do not embed them into a branch-and-bound algorithm. Le Thi Hoai
and Pham Dinh [18] exploit this idea within a branch-and-bound algorithm
using rectangular partitions for solving BoxQP problems. After a suitable
transformation, this approach can also be applied to binary problems.

1.2 Our Contribution

The main contribution of this paper is a novel approach to nonconvex
quadratic integer optimization, combining techniques from nonlinear and
discrete optimization in an appropriate way. In particular, this approach
has the following features:

Lower bounds from nonconvex relaxations. We obtain lower bounds
by solving appropriate nonconvex continuous optimization problems, while
most approaches in the literature are based on convex relaxations. This is
possible since our nonconvex relaxation can still be solved to global opti-
mality efficiently.

Use of dual problems for bound computation. We solve the dual
formulation of our nonconvex continuous optimization problems instead of
the primal one. This allows us to use approximate solutions, which still yield
valid bounds. In practice, it does not pay off to solve the dual problems with
a high accuracy, since a small increase in the bound is unlikely to allow the
pruning of the node.

Acceleration by preprocessing. For solving the continuous problems
more efficiently, we compute a spectral decomposition of the respective ma-

5

trices in the preprocessing. For a single solution of the problem, this does
not pay off. However, within our branch-and-bound algorithm, problems
that share the same matrix are solved exponentially often, so that the pre-
processing has a very positive effect on the overall running time. Moreover,
we compute initial solutions for the relaxations in the preprocessing.

Reordering of input matrix. We try to reorder the variables of Prob-
lem (1) such that a convex problem is reached as soon as possible, assuming
that variables are fixed in the resulting order. In the convex case, bounds
tend to be tighter and nodes can be pruned more efficiently, as done in [7].

2 Lower Bounds from Axis-parallel Ellipsoids

The main ingredient of our algorithm are lower bounds obtained by minimiz-
ing the objective function q(x) of Problem (1) over appropriate ellipsoids.
In the following, we describe the general idea of the bound computation.
The choice of the ellipsoid is discussed in Section 3, the details of the com-
putation are reported in Section 4.3. We first consider the nonconvex case;
the convex case has to be handled differently, see Section 2.2 below.

2.1 Nonconvex Case

We are interested in finding a lower bound for Problem (1) that is efficiently
computable when the matrix Q is not positive semidefinite. To this end, we
first relax the integrality constraint to get

min q(x) = x�Qx+ L�x
s.t. lj ≤ xj ≤ uj (j = 1, . . . , n) .

Since integrality is not required here, we can scale the problem and hence
assume that lj = −1 and uj = 1 for all j = 1, . . . , n. The resulting relaxation
is still an NP-hard problem in the nonconvex case, so that we resort to the
continuous relaxation (2) where we restrict ourselves to ellipsoids that are
centered in the origin.

Hence we consider ellipsoids E(H) with

[−1, 1]n ⊆ E(H) = {x ∈ R
n | x�Hx ≤ 1} (3)

such that H is a positive definite matrix and, by scaling again, the radius r

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x̄

Figure 1: Computation of lower bounds in the nonconvex case.

can always be fixed to one, so that the relaxed problem becomes

min q(x) = x�Qx+ L�x (4)

s.t. x�Hx ≤ 1 .

Furthermore, since the objective function q(x) is assumed to be nonconvex,
the optimal solution of the problem above lies on the boundary of the el-
lipsoid E(H). Indeed, the second order necessary optimality condition in
the interior of the convex set E(H), ∇2q(x∗) = 2Q � 0, cannot be satisfied.
Hence we can restrict ourselves to studying the nonconvex problem

z∗ = min q(x) = x�Qx+ L�x (5)

s.t. x�Hx = 1 .

See Figure 1 for an illustration of the case of indefinite q(x) with a spherical
constraint.

Despite its nonconvexity, it is well known that an optimal solution x̄ of
problem (5) can be fully characterized by the following conditions [12, 30]:

2(Q− μ̄H)x̄ = −L

Q− μ̄H � 0 (6)

x̄�Hx̄ = 1 .

7

The optimal multiplier μ̄ is uniquely determined in closed form as [19]

μ(x̄) = −1

2
(2x̄�Qx̄+ L�x̄). (7)

Furthermore, if Q− μ̄H is positive definite, then Problem (5) has a unique
global solution that is obtained as x̄ = −1

2(Q − μ̄H)−1L. In general, an
optimal solution is obtained as x̄ = −1

2(Q − μ̄H)†L, where (·)† denotes
the Moore-Penrose generalized-inverse. It has also been proved that an
approximation to the global solution z∗ can be computed in polynomial
time; see e.g. [2, 33, 34]. Hence Problem (5) can be considered an “easy”
problem from a theoretical point of view. Within our branch-and-bound
context, it is crucial to solve this problem very quickly using appropriate
algorithms. This is explained in detail in Section 4.3.

Another important question is how to choose the matrix H in order to
obtain tight bounds. We address this question in Section 3.

2.2 Convex Case

In the following, we consider the case where the objective function q(x) of
Problem (1) is convex. In this case, it is easy to see that the bound given
by Problem (4) is still a valid lower bound. However, we have to distinguish
two very different cases at this point.

If the global continuous minimizer x∗ of q(x) does not belong to E(H),
then it is easy to see that even the bound given by Problem (5) is a valid
lower bound. This bound is tighter than the global continuous minimum
q(x∗). We can thus use the same approach as in the nonconvex case in order
to compute an improved lower bound in the convex case; see Figure 2 (left).

On the other hand, if x∗ ∈ E(H), then the bound given by Problem (4)
is just the continuous minimum itself an hence useless in a branch-and-
bound-approach. At the same time, Problem (5) does not necessarily yield
a valid lower bound in this case. We thus use a slightly different approach,
inspired by the method proposed in [7] but similar to our method used in
the nonconvex case: we choose the point z ∈ (12 , . . . ,

1
2)

� + Z
n closest to x∗

and determine an ellipsoid

Ez(H) = {x ∈ R
n | (x− z)�H(x− z) ≤ α} ,

where α is chosen maximally such that Ez(H) does not contain any integer
feasible point in its interior; see Figure 2 (right). Clearly, Ez(H) contains
also x∗. From this, it follows that a lower bound for Problem (1) is obtained

8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x̄ x∗

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x̄
x∗

z

Figure 2: Computation of lower bounds in the convex case.

by solving

min q(x) = x�Qx+ L�x
s.t. (x− z)�H(x− z) = α .

By an appropriate transformation, which does not affect the matrix Q, this
problem can be reduced to Problem (5), and solved by the same techniques
as discussed in Section 4.3.

3 Choice of the Ellipsoid

We next discuss the problem of finding a “good” ellipsoid E(H) of the
form (3). The main objective is to find a matrix H such that the lower
bound given by (5) is as tight as possible. At the same time, the matrix H
should be easily computable.

In the following, we restrict ourselves to axis-parallel ellipsoids, i.e., to
matrices H = Diag(h) with h ∈ R

n
+. More formally, we consider the set

Hdiag =

{
H � 0 | H = Diag(h),

n∑
i=1

hi = 1

}
,

9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x̄1 x̄2

Figure 3: Different choices of the ellipsoid E(H) give rise to different bounds.

which defines an open simplex in R
n, and look for a solution of the problem

max
H∈Hdiag

min
x∈Rn

{q(x) | x�Hx = 1} . (8)

Figure 3 illustrates how different choices of H may lead to different values
of the resulting lower bound.

A straightforward feasible choice of the ellipsoid corresponds to H = 1
nI.

Indeed, this choice does not require any computation, but it may result in
a weak bound. We analyse two other approaches: either choose H as the
solution of a homogeneous version of Problem (8) or obtain H as a heuristic
solution of (8).

The homogeneous version of problem (8) consists in ignoring the linear
term in the objective function, so that it reduces to

max
H∈Hdiag

λmin(Q,H) = max
H∈Hdiag

min
x∈Rn

x�Qx

x�Hx
, (9)

where λmin(Q,H) is the generalized smallest eigenvalue for the pencil (Q,H).
This approach was originally proposed by Kamath and Karmarkar [16] for
the special case of optimizing a quadratic form over {−1, 1}n. They show
the equivalence of Problem (9) with a semidefinite optimization problem

10

that, in the nonconvex case, can be easily written as

max
H,t

t

tQ+H � 0,

H ∈ Hdiag .

(10)

This problem satisfies the Slater condition (i.e., strict feasibility holds for
the primal and dual problem) and we can apply an interior point method
to solve (10), yielding an optimal solution of Problem (9).

The third possibility consists in applying a subgradient-type (first order)
method to the nonsmooth Problem (8); see e.g. [5]. The objective function
of (8), namely

min
x∈Rn

{q(x) | x�Hx = 1} ,

is not continuously differentiable in general and a generalized gradient is
easily obtained as −Diag(μ̄ · x̄2), where x̄2 ∈ R

n is the vector with compo-
nents x̄2i ; for more details see [25]. We cannot prove that this function is
concave over H ∈ Hdiag, so that this approach is not guaranteed to yield op-
timal solutions of Problem (8). However, our results presented in Section 5
show that it yields very tight bounds in general.

4 Branch-and-Bound Algorithm

Our aim is to solve Problem (1) to proven optimality. To this end, we embed
the lower bounds obtained by the strategies illustrated in Section 2.1 and 2.2
into a branch-and-bound framework. In the following, we describe the main
components of this algorithm: the enumeration strategy (Section 4.1), the
order in which variables are fixed (Section 4.2), the computation of lower
bounds (Section 4.3), and the preprocessing phase (Section 4.4).

4.1 Enumeration Strategy

We branch by fixing a variable xj to any integer value within the domain
[lj , uj]. By this, the number of subproblems is at most uj − lj + 1. It
follows that after each branching step, the resulting subproblem is an integer
quadratic programming problem again, with a dimension decreased by one.
We use a depth-first strategy.

In order to enumerate subproblems as quickly as possible, our aim is to
perform the most time consuming computations in a preprocessing phase.
Following [7], we decide to always fix the first unfixed variable according to

11

an order {i1, . . . , in} which is determined in the preprocessing phase, i.e.,
before starting the enumeration; see Section 4.2. Without loss of generality,
we assume here that the fixing order is {1, 2, . . . , n}.

At a certain node s at level d of the branch-and-bound tree, the first d

components of the vector x have been already fixed to integer values r
(s,d)
i

with i = 1, . . . , d, so that the vector x can be rewritten as

(r
(s,d)
1 , . . . , r

(s,d)
d , xd+1, . . . , xn) .

Fixing the first d variables results in subproblems depending only on the
variables (xd+1, . . . , xn) and produces changes in the linear and constant
terms of the quadratic objective function q(x). More precisely, the reduced
objective function q(s,d) : Rn−d → R is of the form

q(s,d)(x) = x�Q(d)x+ L(s,d)�x+ c(s,d),

where

L
(s,d)
j−d = Lj + 2

d∑
i=1

qijr
(s,d)
i , j = d+ 1, . . . , n, (11)

and

c(s,d) =

d∑
i=1

Lir
(s,d)
i +

d∑
i=1

d∑
j=1

qijr
(s,d)
i r

(s,d)
j . (12)

We observe that the matrix Q(d) does not depend on the values at which the
first d variables are fixed, i.e., it does not depend on the node s. Namely, it
is obtained from Q by deleting the first d rows and columns. If follows that
all nodes at a given level d share the same quadratic term. As described in
Section 4.3 below, the efficient solution of the relaxation needs some expen-
sive operations on Q(d). Thus using a fixed order of variables implies that we
have to perform such expensive operations only on n different matrices Q(d),
which can be done in a preprocessing phase. The same is true for other op-
erations concerning Q(d); see Section 4.4. If the variables to be fixed were
chosen freely, the number of such matrices would become exponential.

At each iteration of the branch-and-bound algorithm, we pick a subprob-
lem given by (Q(d), L(s,d), c(s,d)), and we compute a lower bound by using
the strategies described in Section 2.1, distinguishing between nonconvex
(Q(d) �� 0) and convex (Q(d) � 0) subproblems. We note that, once an order
of fixing is established, we know in advance at which level d̄ the subma-
trix Q(d̄) becomes positive semidefinite. This implies that Q(d) is positive
semidefinite for all d ≥ d̄, so that, starting at that level, the convex strategy

12

for the calculation of lower bound is always used. In Section 4.2, we explain
how the fixing order can be defined in order to exploit this fact.

Once the lower bound is obtained, the node smay be pruned (if the lower
bound exceeds the value of the best known feasible solution) or a bunch of
subproblems are added to the list. The algorithm goes on until the list is
empty, so that the current best solution is proved to be optimal.

For the computation of upper bounds, the algorithm produces feasible
solutions by rounding the components of a vector x̄ obtained in the lower
bound computation. In the nonconvex case, this vector can be computed as
an approximate solution of Problem (5). Since we solve the dual problem
of (5), we use

x̄ = −1

2
(Q− μ̄H)†L

to compute a corresponding primal vector x̄. In the convex case, we simply
choose x̄ = x∗, the global optimizer of q(x).

In the following, we give an outline of the algorithm.

13

Branch-and-Bound scheme GQIP for Problem (1)

Data. Q ∈ S
n, L ∈ R

n, l, u ∈ Z
n.

Fixing Order. Determine a variable order x1, . . . , xn.

Pre-processing. Compute the matrix Q(d) for d = 0, . . . , n − 1 and
perform all expensive operations on Q(d).

Initialization. zub = ∞, x∗ = (), L(1,0) = L, c(1,0) = 0, r(1,0) = (),

L =
{(

Q(0), L(1,0), c(1,0), r(1,0)
)}

.

While L �= ∅
1. Pick problem

(
Q(d), L(s,d), c(s,d), r(s,d)

)
with largest d in L

where L(s,d), c(s,d) are computed by (11), (12).

2. Compute lower bound z
(s,d)
lb and corresponding x̄(s,d) ∈ R

n−d.

3. Update upper bound: let xI = (r(s,d), �x̄(s,d)1 �, . . . , �x̄(s,d)n−d �);
if q(xI) < zub, then x∗ = xI and zub = q(x∗).

4. If z
(s,d)
lb < zub and d < n, then branch on variable xd+1 and

add to L the corresponding ud+1 − ld+1 + 1 subproblems.

End While

Return. x∗, zub = q(x∗).

4.2 Reordering of the Variables

As shown by the experimental results in Section 5, the performance of our
algorithm depends strongly on the first level of convexity d̄. Indeed, an early
appearance of convex nodes makes the overall scheme much more efficient, as
lower bounds tend to be tighter in this case and more sophisticated pruning
rules can be applied [7].

We would thus like to find a permutation of columns and rows of Q in
order to get d̄ as small as possible. To this end, we propose a heuristic

14

choice of the fixing order based on diagonal dominance properties. Let mi

be defined as

mi = qii −
n∑

j=i
j �=i

|qij|, i = 1, . . . , n.

It is well known [13] that if all mi are nonnegative with qii ≥ 0, the matrix Q
is positive semidefinite. Roughly speaking, the rule we propose to use con-
sists in selecting the order of the variables by increasing values of mi. The
underlying idea is that the smaller the value of m�, the more significant is
the role of x� for the nonconvexity of Q. Hence we proceed selecting variable
x� and reducing the size of the matrix recursively to obtain the final order
as reported in the following scheme.

Diagonal Dominance Rule for Reordering

Data. Q ∈ S
n. Set Q(n) = Q.

Do t = n, . . . , 1

1. calculate mi for i = 1, . . . , t.

2. choose the index � = arg min
i=1,...t

⎛⎜⎝q
(t)
ii −

t∑
j=i
j �=i

|q(t)ij |

⎞⎟⎠.

3. set jn−t+1 = �.

4. obtain Q(t−1) by removing the row and column � from Q(t)

End Do

Return. (xj1 , . . . , xjn).

4.3 Computation of the Lower Bounds

As discussed above, the nonconvex problem (5) can be solved efficiently.
Most of the algorithms proposed in literature for finding a global solution of
Problem (5) (and thus a lower bound in our context) have been proposed in

15

the context of trust region methods for unconstrained nonlinear minimiza-
tion [22, 30, 12, 10]. Indeed, Problem (5) has been deeply studied in the
nonlinear continuous optimization community, with the main aim of defining
efficient algorithms being able to treat large scale instances and exploit spar-
sity, thus avoiding expensive operations on the matrices [31, 26, 20, 17, 9, 11].

However, sparsity is not given in our context and instances are compa-
rably small from a continuous optimization point of view. Indeed, in our
case the dimension of the problems is usually below one hundred variables,
as larger instances cannot be solved in reasonable time due to integrality
constraints. On the other hand, within a branch-and-bound scheme, many
problems sharing the same data must be solved. This different situation
must be taken into account and exploited in order to solve the continuous
problems quickly in each node.

The main idea is to perform heavy computational operations on the
matrices Q and H in the preprocessing, in order to get a simplified form of
Problem (5). Indeed, we can apply the linear transformation y = H

1
2x to

the variable space – which is particulary cheap as H = Diag(h) is diagonal,

in which case H
1
2 = Diag(

√
h1, . . . ,

√
hn) – thus obtaining

min y�H− 1
2QH− 1

2 y + (H− 1
2L)�y

s.t. ||y||2 = 1 .

At this point we assume that we can calculate the spectral decomposition
of the matrix H− 1

2QH− 1
2 as

H− 1
2QH− 1

2 = P ΛP�,

where P = [v1 v2 . . . vn] is the orthogonal matrix of orthonormal eigenvectors

of H− 1
2QH− 1

2 , and Λ is the diagonal matrix with elements λ1 ≤ · · · ≤ λn

being the eigenvalues of H− 1
2QH− 1

2 in ascending order. In Section 4.4, we
will explain how to perform such operations in the preprocessing phase. For
sake of simplicity, we rename y = P�y, so that our problem takes the form

z∗ = min y�Λy + L̃�y (13)

s.t. ||y||2 = 1

where L̃ = P�H− 1
2L. Note that the size of this problem is linear in the

dimension n. Moreover, in this simplified form the optimality conditions (6)

16

reduce to

2(λi − μ̄)ȳi = −L̃i

μ̄ ≤ λ1

‖ȳ‖2 = 1

Most algorithms proposed in the literature look for an accurate primal so-
lution ȳ, as they have been developed in the context of trust region meth-
ods for unconstrained nonlinear minimization. In particular, research has
been devoted to the development of methods for large scale problems (up to
thousands of variables) in which spectral decomposition is too heavy to be
performed. We cite here the approach proposed by Lucidi and Palagi [19],
which is based on an unconstrained reformulation of Problem (13) and on
some properties of its first order stationary points. We will use this approach
for obtaining a global solution ȳ in the preprocessing phase of our branch-
and-bound scheme. In [19], the complete equivalence of Problem (13) with
the minimization of an exact penalty function

min
y∈Rn

y�Λy + L̃�y +
1

ε
(||y||2 − 1)2 + μ(y)(1− ||y||2)

has been proven, where ε > 0 is a computable penalty parameter and μ(y)
is obtained via (7) as

μ(y) = −1

2
(2y�Λy + L̃�y). (14)

However, although not explicitly stated in the first papers [30, 12], most
of the algorithms are based on duality results. Indeed in [31, 26] different
dual programs have been proposed which are equivalent to the original pri-
mal one and which exhibit strong duality. A dual problem of (13) without
duality gap is

φ∗ = max
μ

φ(μ) = μ− 1
4 L̃

�(Λ− μI)†L̃ (15)

Λ− μI � 0,

where φ(μ) is a concave function (so that it follows implicitly that Prob-
lem (13) is convex).

Considering the dual problem has an important side effect in our con-
text. Indeed, we want to use the optimal value φ∗ in a branch-and-bound
framework as a lower bound to decide whether to prune a certain subtree

17

or to explore it. Actually, the value of φ(μ) for any feasible dual solution
represents a safe bound. Hence we do not need to solve problem (15) to a
high degree of accuracy to get μ̄. On contrary, if we considered the primal
problem, we would need to find a very good approximation of the global
solution ȳ.

So let us recall a scheme for the solution of the dual problem (15). First
we note that the pseudoinverse of a diagonal matrix is obtained by taking
the reciprocal of each non-zero element on the diagonal, leaving the zeros
in place. This fact underlines that the pseudoinverse is not a continuous
operation: slight changes on the zero diagonal entries result in significant
changes on the pseudoinverse.

Indeed, solution methods for the pair of problems (13)–(15) distinguish
two main cases: the easy case and the hard case, which can in turn be
subdivided into two further sub-cases. For sake of completeness, we sum-
marize these possibilities in the following proposition. Here, φ′ denotes the
derivative of the scalar function φ(μ).

Proposition 1 Let J =
{
i : L̃i �= 0, λi = λ1

}
.

(i) (easy case) If J �= ∅, then μ̄ < λ1 and φ′(μ̄) = 0.

(ii) (nearly hard case) If J = ∅ and φ′(λ1) < 0, then μ̄ < λ1 and φ′(μ̄) = 0.

(iii) (hard case) If J = ∅ and φ′(λ1) ≥ 0, then μ̄ = λ1.

Proof. Because μ̄ is optimal for (15), there exists ȳ such that the optimality
conditions are satisfied. Consider case (i) with J �= ∅. Without loss of
generality, we can assume L̃1 �= 0. It is not hard to see that global optimality
conditions cannot be satisfied with μ̄ = λ1, so that μ̄ < λ1. Moreover, since
φ is strictly concave, μ̄ satisfies φ′(μ̄) = 0. As opposed, consider situations
where J = ∅. Since φ is strictly concave, if φ′(λ1) < 0, then φ(μ) > φ(λ1)
for any μ < λ1. It follows that μ̄ < λ1 and φ′(μ̄) = 0, so that (ii) is proved.
On the contrary, if φ′(λ1) ≥ 0 then φ(μ) < φ(λ1) for any μ < λ1. Hence
μ̄ = λ1 and (iii) follows. �

Since we assume to have a diagonal matrix Λ, we can easily obtain the
index set J . If J is empty, we need to evaluate the first derivative of φ
in the smallest eigenvalue λ1 to decide whether we are in case (ii) or (iii).
Hence the hard case does not represent at all a numerical difficulty, whereas
in either case (ii) and (i) the main effort is finding the zero of the nonlinear

18

function φ′ over the open interval μ ∈ (−∞, λ1). We observe that

0 = φ′(μ) ⇐⇒ 0 = ‖y(μ)‖2 − 1 =
n∑

i=1

L̃2
i

4(λi − μ)2
− 1 .

In the literature [22], on small-scale instances, this problem has been
addressed by using a Newton method for finding the zero of the so-called
secular equation

ϕ(μ) = 1− 1

‖y(μ)‖ .

The Newton iteration is

μk+1
N = μk − ϕ(μk)

ϕ′(μk)

and a Safeguard step is performed to check whether μk+1
N lies outside the

region of interest (−∞, λ1]. If so, the value μk+1 is forced to belong to a
prefixed interval which is known to contain the optimal solution.

For theoretical details we refer to Moré and Sorensen [22]. We just
mention that the Moré-Sorensen algorithm can be significantly simplified
thanks to the knowledge of the spectral decomposition PΛP T . In particular
both function and gradient evaluation are performed in O(n) and also we
can get rid of the estimate of λ1 which is known in advance. For technical
and practical details of the implementation we refer to Piacentini [25].

The choice of the initial value for μk is crucial for obtaining a good
estimate of the solution in a few Newton steps. In a branch-and-bound
framework, we will use a warm start strategy described in Section 4.4 which
is based on the knowledge of the optimal primal solution of certain subprob-
lems of type (13) and on the estimate (14).

4.4 Preprocessing

As discussed above, an important feature of our algorithm is the preparation
of the lower bound computation in a preprocessing phase. Recall that the
matrix Q(d) only depends on the depth d and hence can only take n different
values, as we fix the order of branching variables in advance. In this section,
we summarize the main components of the preprocessing.

Choice of H(d). Depending on the given matrix Q(d), we compute an
appropriate matrix H(d) following the lines of Section 3, using one of the
methods proposed. In our implementation, we actually compute only H(0)

19

in the way described, while deriving all other H(d) by deleting appropriate
rows and columns in H(0). This descreases preprocessing times without
yielding significantly weaker bounds.

Compute weighted Q(d). Once the matrices H(d) are determined, we
can compute the transformed matrices

Q̃(d) = H(d)−
1
2Q(d)H(d)−

1
2

for d = 0, . . . , n− 1. These are needed in the bound computation.

Spectral decomposition of Q̃(d). One of the most important tasks in
the preprocessing is the computation of (Λ(d), P (d)), the eigenvalues and
eigenvectors of the weighted matrix Q̃(d), again needed in the bound com-
putation.

Initial solutions for warm starts. For each subproblem, we need a
starting value μ0 for the dual algorithm described in Section 4.3. In the
preprocessing, we compute an optimizer y(d) of

min y�Λ(d)y + (L(d)H(d)−
1
2)�P (d)y

s.t. ||y||2 = 1 ,
(16)

where L(d) ∈ R
n−d is obtained from L by dropping the first d components.

By (7), we obtain an optimal solution of the corresponding dual problem as

μ(y(d)) = −1

2

(
2y(d)

�
Λ(d)y(d) + (L(s,d)H(d)−

1
2)�P (d)y(d)

)
.

Computation of stationary points. In each convex subproblem, we
need the stationary point of q(x) and the corresponding function value in
order to compute a lower bound. For this, we use the incremental ap-
proach proposed in [7]. This approach remains feasible in the nonconvex
case without changes. Using an appropriate preprocessing, the update of
the stationary point takes only linear time in n per node.

5 Experimental Results

In this section we report our computational experience on an implementa-
tion named GQIP of the branch-and-bound scheme presented in Section 4.

20

Algorithm GQIP is implemented in C++ and Fortran 90. All numerical
experiments have been performed on an Intel Core2 processor running at
3.16 GHz with 4GB of RAM.

We restrict ourselves to ternary quadratic instances, i.e., instances where
variables xi are constrained to assume values in {−1, 0, 1} for all i = 1, . . . , n.
For our experiments, we consider objective functions q : Rn → R generated
randomly as in [6]: given a p ∈ [0, 1], we choose n eigenvalues, where �p · n�
are chosen uniformly at random from [−1, 0] and the remaining ones are
chosen uniformly at random from [0, 1]. In particular, the parameter p allows
to control whether the matrix Q is positive semidefinite (p = 0), negative
semidefinite (p = 1) or indefinite. Finally, we determine L by choosing all
entries uniformly at random from [−1, 1]. As in [6], we created ten random
instances from different random seeds for each n ∈ {10, 20, . . . , 50} and each
p ∈ {0, 0.1, . . . , 1}. We thus consider 110 instances in total for each size n.
In all experiments, we set the time limit to one hour; instances not solved
within the time limit are considered a failure.

We first examine the impact of the choice of the matrix H, discussed in
Section 3. We implemented three different choices:

• GQIP1; H = 1
n · I

• GQIP2; H obtained by solving problem (9), using CSDP [4]

• GQIP3; H chosen by heuristically solving problem (8) by a simple im-
plementation of a subgradient method.

All the three choices above have been run with the same reordering
rule for the variables, namely the one described in Section 4.2. In Table 1,
for each dimension n, we report the number of instances solved to proven
optimality (solved), the maximum time spent to solve a problem (max time),
and the average over the successfully solved instances of: the time spent
in the preprocessing phase (avg prep), the overall time spent to solve the
instance (avg time), and the number of nodes (avg # node). All running
times are given in CPU-seconds.

As reported in Table 1, the three choices of H can be considered equiva-
lent in terms of robustness and computational time for dimensions up to 30
or 40. However the average number of nodes of the branching tree is signifi-
cantly smaller with GQIP3. This is more evident for dimension 50 where the
other two versions GQIP1 and GQIP2 need a much longer running time than
GQIP3. It can also be noticed that, for higher dimension, the preprocessing
time is negligible with respect to the overall time.

21

n alg solved max time avg prep avg time avg # node

10 GQIP1 110 0,0 0,0 0,0 33,5
GQIP2 110 0,0 0,0 0,0 60,7
GQIP3 110 0,1 0,0 0,0 28,5

20 GQIP1 110 0,0 0,0 0,0 1068,5
GQIP2 110 0,0 0,0 0,0 1068,3
GQIP3 110 0,6 0,1 0,1 646,1

30 GQIP1 110 1,1 0,0 0,2 24467,6
GQIP2 110 3,6 0,0 0,4 62028,3
GQIP3 110 1,2 0,5 0,4 5494,5

40 GQIP1 110 55,4 0,1 5,8 904886,6
GQIP2 110 56,1 0,1 6,7 979664,4
GQIP3 110 10,4 1,1 1,9 102523,3

50 GQIP1 109 1431,3 0,2 181,8 23425439,3
GQIP2 109 1597,3 0,2 208,4 23602304,1
GQIP3 110 309,6 2,2 31,8 2871660,7

Table 1: Results on ternary instances with different choice of H.

In the following evaluations, we thus concentrate on the most successful
variant GQIP3. To highlight the role of the reordering of variables, we report
in Tables 2 and 3 the average results of the comparison between GQIP3
using the diagonal dominance ordering described in section 4.2 (GQIP3) and
without using any reordering of the variables (GQIP3NO). Table 2 shows that
using diagonal dominance ordering decreases running times significantly.
This is due to a much smaller number of nodes to be enumerated on average.
In other words, the bounds are generally tighter after reordering.

We next examine the level of convexity of the problems when using the
two different rules: as before, we denote by d̄alg the smallest d such that Q(d)

is a positive semidefinite submatrix of Q, depending on the reordering al-
gorithm being applied. In Table 3, we report the values d̄alg/n. In other
words, if Q is positive semidefinite, we obtain 0%, while the result is 100%
if even the last nontrivial level is nonconvex. The diagonal dominance or-
dering yields much better results in terms of reaching a convex level quickly.
However, the value of d̄alg/n is far away from p in general, for both methods.
This is also obvious from Figure 4, where we plot the results for n = 50.

We finally compare the performance of GQIP3 with the following alter-
native solvers:

• COUENNE [1]: an algorithm for solving nonconvex mixed-integer non-

22

n alg solved max time avg prep avg time avg # node

10 GQIP3NO 110 0,1 0,0 0,0 29,2
GQIP3 110 0,1 0,0 0,0 28,5

20 GQIP3NO 110 0,3 0,1 0,1 700,5
GQIP3 110 0,6 0,1 0,1 646,1

30 GQIP3NO 110 1,1 0,5 0,4 11639,9
GQIP3 110 1,2 0,5 0,4 5494,5

40 GQIP3NO 110 13,3 2,4 1,0 174798,3
GQIP3 110 10,4 1,1 1,9 102523,3

50 GQIP3NO 110 1542,7 2,2 112,7 11921425,2
GQIP3 110 309,6 2,2 31,8 2871660,7

Table 2: Results on ternary instances when using diagonal dominance or-
dering (GQIP3) and without reordering (GQIP3NO).

n alg 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 GQIP3NO 0% 56% 69% 79% 87% 93% 96% 98% 100% 100% 100%
GQIP3 0% 32% 49% 64% 73% 88% 91% 97% 100% 100% 100%

20 GQIP3NO 0% 71% 86% 91% 98% 99% 99% 99% 100% 100% 100%
GQIP3 0% 45% 64% 76% 82% 93% 95% 100% 100% 100% 100%

30 GQIP3NO 0% 72% 79% 88% 96% 98% 99% 99% 100% 100% 100%
GQIP3 0% 54% 65% 75% 87% 94% 97% 99% 100% 100% 100%

40 GQIP3NO 0% 75% 87% 93% 95% 98% 99% 99% 100% 100% 100%
GQIP3 0% 59% 73% 83% 92% 96% 99% 100% 100% 100% 100%

50 GQIP3NO 0% 76% 88% 94% 96% 99% 99% 100% 100% 100% 100%
GQIP3 0% 59% 74% 88% 92% 99% 99% 100% 100% 100% 100%

Table 3: Depth of the first convex level detected with either diagonal dom-
inance ordering (GQIP3) or no reordering (GQIP3NO).

linear programs, based on convex underestimators;

• BARON [27]: a general purpose solver for optimization problems with
nonlinear constraints;

• Q-MIST [6]: a branch-and-bound algorithm based on SDP relaxations
for mixed integer quadratic programming.

We use as test bed the same random instances as before. In Table 4, we
report the results grouped by dimension n. We see that BARON and COUENNE

are able to solve, within the time limit, only instances of dimensions up
to 40, while even some instances with dimension 30 could not be solved to
optimality. This is due to the fact that they are general purpose solvers that
cannot exploit the particular structure of Problem (1) such as Q-MIST and
GQIP. For this reason, neither BARON nor COUENNE is competitive in terms of
both robustness and computational time for this class of problems.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GQIP3
GQIP3NO

Figure 4: Graphical comparison between GQIP3 and GQIP3NO.

In order to analyze the performance of GQIP against Q-MIST in more
detail, we investigate its dependance on the percentage of negative eigen-
values p. In Table 5, we report, for each dimension n ∈ {20, 30, 40, 50} and
each p ∈ {0, 0.1, . . . , 1}, the average of the computational time over the 10
random instances solved. In Figure 5, we plot the corresponding running
times on a logarithmic scale; Figure 6 shows the results for n = 50 on a lin-
ear scale. It turns out that GQIP outperforms Q-MIST for every percentage
p, however, the main improvement (in absolute terms) is obtained when p
lies between 20% and 40%. On the other hand, Q-MIST enumerates a signif-
icantly smaller number of nodes, but at the cost of a much longer running
time for computing lower bounds.

24

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−1

10
0

10
1

10
2

10
3

Q-MIST (n=30)
GQIP3 (n=30)
Q-MIST (n=40)
GQIP3 (n=40)
Q-MIST (n=50)
GQIP3 (n=50)

av
er
a
g
e
ru

n
n
in
g
ti
m
e
(l
o
g
sc
a
le
)

percentage of negative eigenvalues

Figure 5: GQIP3 versus Q-MIST: time comparison for n = 30, 40, 50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

Q-MIST (n=50)

GQIP3 (n=50)

av
er
a
g
e
ru

n
n
in
g
ti
m
e

percentage of negative eigenvalues

Figure 6: GQIP3 versus Q-MIST: time comparison for n = 50

25

n alg solved max time avg time avg # node

10 COUENNE 110 0,4 0,1 18,0
BARON 110 0,4 0,1 8,9
Q-MIST 110 1,0 0,0 9,1
GQIP3 110 0,1 0,0 28,5

20 COUENNE 110 51,4 0,0 3822,0
BARON 110 477,1 24,1 1548,8
Q-MIST 110 1,0 0,2 53,5
GQIP3 110 0,6 0,1 646,1

30 COUENNE 78 3567,3 1476,7 181127,6
BARON 82 3552,1 1173,9 36218,1
Q-MIST 110 10,0 2,0 199,7
GQIP3 110 1,2 0,4 5494,5

40 COUENNE 2 3148,3 2012,3 99500,0
BARON 4 2233,8 13494,4 19411,3
Q-MIST 110 106,0 16,1 831,6
GQIP3 110 10,4 1,9 102523,3

50 COUENNE 0 *** *** ***
BARON 0 *** *** ***
Q-MIST 110 1593,0 186,0 5463,7
GQIP3 110 309,6 31,8 2871660,7

Table 4: Comparitive results for ternary instances for different solvers.

n alg 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

20 GQIP3 0,20 0,17 0,10 0,09 0,09 0,09 0,09 0,09 0,09 0,09 0,09
Q-MIST 0,30 0,20 0,30 0,30 0,40 0,30 0,20 0,20 0,20 0,10 0,10

30 GQIP3 0,53 0,46 0,44 0,42 0,41 0,40 0,39 0,43 0,36 0,38 0,36
Q-MIST 1,70 1,70 4,30 3,30 3,00 2,20 1,60 1,20 1,30 1,20 0,70

40 GQIP3 1,35 1,13 2,12 2,22 3,04 2,20 1,81 1,57 1,17 1,08 1,03
Q-MIST 11,00 18,30 36,80 33,00 26,60 16,80 9,30 8,60 6,90 4,80 4,70

50 GQIP3 4,35 15,56 45,19 59,89 61,22 63,21 43,46 10,62 6,40 4,82 2,63
Q-MIST 57,30 273,80 431,70 423,50 403,10 249,90 84,40 44,00 28,60 28,40 21,80

Table 5: Detailed comparison between GQIP3 and Q-MIST: average times at
different percentages of negative eigenvalues.

26

References

[1] P. Belotti. Couenne: a users manual. Lehigh University, 2009. Tech-
nical report.

[2] A. Ben-tal and M. Teboulle. Hidden convexity in some nonconvex
quadratically constrained quadratic programming. Mathematical Pro-
gramming, 72:51–63, 1996.

[3] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann,
C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter.
An algorithmic framework for convex mixed integer nonlinear programs.
Discrete Optimization, 5:186–2004, 2008.

[4] B. Borchers. CSDP, a C library for semidefinite programming. Opti-
mization Methods and Software, 11(1):613–623, 1999.

[5] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing Markov chain on a
graph. SIAM Review, 46(4):667–689, 2004.

[6] C. Buchheim and A. Wiegele. Semidefinite relaxations for non-convex
quadratic mixed-integer programming. Mathematical Programming
(Series A), 2012. doi: 10.1007/s10107-012-0534-y. To appear.

[7] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound
algorithm for convex quadratic integer programming. Mathematical
Programming (Series A), 2011. doi: 10.1007/s10107-011-0475-x. Online
first.

[8] S. Burer. Optimizing a polyhedral-semidefinite relaxation of completely
positive programs. Mathematical Programming Computation, 2(1):1–
19, 2010.

[9] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-region methods.
SIAM/MPS Series on Optimization, SIAM, 2000.

[10] R. S. Dembo and T. Steihaug. Truncated-Newton methods algorithms
for large-scale unconstrained optimization. Mathematical Programming,
26:190–212, 1983.

[11] C. Fortin and H. Wolkowicz. The trust region subproblem and semidef-
inite programming. Optimization Methods and Software, 19(1):41–67,
2004.

27

[12] D. M. Gay. Computing optimal locally constrained steps. SIAM Journal
on Scientific and Statistical Computing, 2(2):186–197, 1981.

[13] G. H. Golub and C. F. Van Loan. Matrix Computations. The John
Hopkins Press, Baltimore, 1989.

[14] ILOG, Inc. ILOG CPLEX 12.1, 2009. www.ilog.com/products/cplex.

[15] A. Kamath and N. Karmarkar. A continuous approach to compute
upper bounds in quadratic maximization problems with integer con-
straints. In C. A. Floudas and P. M. Pardalos, editors, Recent Ad-
vances in Global Optimization, pages 125–140, Princeton University,
1991. Princeton University Press.

[16] A. Kamath and N. Karmarkar. A continuous method for computing
bounds in integer quadratic optimization problems. Journal of Global
Optimization, 2(3):229–241, 1992.

[17] An Le Thi Hoai and Tao Pham Dinh. A d.c. optimization algorithm for
solving the trust-region subproblem. Siam Journal on Optimization, 8,
1998.

[18] An Le Thi Hoai and Tao Pham Dinh. A branch and bound method
via d.c. optimization algorithms and ellipsoidal technique for box con-
strained nonconvex quadratic problems. Journal of Global Optimiza-
tion, 13:171–206, 1998.

[19] S. Lucidi and L. Palagi. Topics in Semidefinite and Interior-Point
methods, volume 18 of Field Institute Communications AMS, chapter
Solution of the trust region problem via a smooth unconstrained refor-
mulation, pages 237–250. American Mathematical Society, 1998.

[20] S. Lucidi, L. Palagi, and M. Roma. On some properties of quadratic
programs with a convex quadratic constraint. SIAM Journal on Opti-
mization, 8(1):105–122, 1998.

[21] G. P. McCormick. Computability of global solutions to factorable non-
convex programs. I. Convex underestimating problems. Mathematical
Programming, 10(2):147–175, 1976.

[22] J. Moré and D. C. Sorensen. Computing a trust region step. SIAM
Journal on Scientific and Statistical Computing, 4(3):553–572, 1983.

28

[23] L. Palagi, V. Piccialli, F. Rendl, G. Rinaldi, and A. Wiegele. Handbook
on Semidefinite, Conic and Polynomial Optimization, chapter Compu-
tational approaches to Max-Cut, pages 821–849. Springer, 2012.

[24] P. M. Pardalos and S. A. Vavasis. Quadratic programming with one
negative eigenvalue is NP-hard. Journal of Global Optimization, 1:15–
22, 1991.

[25] M. Piacentini. Nonlinear formulation of Semidefinite Programming and
Eigenvalue Optimization – Application to Integer Quadratic Problems.
PhD thesis, Sapienza – Università di Roma, June 2012.

[26] F. Rendl and H. Wolkowicz. A semidefinite framework to trust region
subproblems with applications to large scale minimization. Mathemat-
ical Programming, 77(2):273–299, 1997.

[27] N. V. Sahinidis and M. Tawarmalani. BARON 9.0.4: Global Optimiza-
tion of Mixed-Integer Nonlinear Programs, User’s Manual, 2010.

[28] A. Saxena, P. Bonami, and J. Lee. Convex relaxations of non-convex
mixed integer quadratically constrained programs: extended formula-
tions. Mathematical Programming, 124(1–2):383–411, 2010.

[29] H. D. Sherali andW. P. Adams. A reformulation-linearization technique
for solving discrete and continuous nonconvex problems, volume 31 of
Nonconvex Optimization and its Applications. Kluwer Academic Pub-
lishers, Dordrecht, 1999.

[30] D. C. Sorensen. Newton’s method with a model trust region modifica-
tion. SIAM Journal on Numerical Analysis, 19(2):409–427, 1982.

[31] R. J. Stern and H. Wolkowicz. Indefinite trust region subproblems and
nonsymmetric eigenvalue perturbations. SIAM Journal on Optimiza-
tion, 5(2):286–313, 1995.

[32] D. Vandenbussche and G. L. Nemhauser. A branch-and-cut algorithm
for nonconvex quadratic programs with box constraints. Mathematical
Programming, 102(3):559–575, 2005.

[33] S. A. Vavasis. Nonlinear optimization. Oxford University Press, 1991.

[34] Y. Ye. A new complexity result on minimization of a quadratic function
with a sphere constraint. In C. A. Floudas and P. M. Pardalos, edi-
tors, Recent Advances in Global Optimization, pages 19 – 31, Princeton
University, 1991. Princeton University Press.

29

	copertinaTR 5 2012
	vigoni_II_tech.report

