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Abstract

In the area of decision support systems, a basic role is held by data warehouses. Though designing
a data warehouse requires different techniques from those experienced in operational databases, it is
still possible to decompose the design process into three distinct phases: conceptual design, logical
design and physical design. This paper addresses a basic issue in physical design by proposing a
heuristic approach which selects an optimal index set to be built in a data warehouse implemented on
a relational DBMS. To achieve this goal we simulate an optimizer which generates query execution
plans and define a cost model to evaluate them. The indexes considered belong to two very common
categories: tid-list indexes and bitmap indexes. Finally, we outline a greedy algorithm which chooses,
from a set of candidate indexes, the most promising ones respecting a constraint on the disk space
devoted to indexing.

1 Introduction

The huge data flow that daily invests companies makes automatic tools crucial to manage information
efficiently. Such a need is particularly felt by managers and knowledge workers, who very often require
automatic or semi-automatic tools to support their job. For this reason, during the last years the presence
of decision-support systemsin the market has been constantly increasing. The core of many decision
support applications is formed by an integrated data repository calleddata warehouse(DW) [13], where
data are represented in a multidimensional way. DW design goes through different phases, namely
conceptual design, logical designandphysical design[4]. In this work we focus on physical design; in
particular, we propose a heuristic approach to index selection in relational DWs implemented through
star schemes.

Given the DW logical scheme (including materialized views), a workload, the data volume and a con-
straint defining the disk space devoted to indexes, the goal is to determine the optimalphysical scheme,
that is, an index set that minimizes the workload execution cost respecting the space constraint. For this
purpose we define an optimizer model that creates an execution plan for each query and a cost model to
compare different solutions. The indexes considered are tid-list and bitmap indexes. The queries express
aggregations over the star join between a fact table and a set of dimension tables; selections may be for-
mulated on attributes of dimension tables. A set of potentially useful candidate indexes is preliminarly
determined considering the workload. Then, a greedy algorithm progressively chooses, from the set of
candidate indexes, the most beneficial ones while the space constraint is met.

The paper is organized as follows: Section 2 summarizes the main issues concerning logical and
physical design; Section 3 outlines the functional architecture on which our approach relies; Section 4
analyzes in detail the component responsible of selecting the execution plan to solve each query; Section
5 presents the mathematical model used to evaluate and compare the costs of different execution plans;
Section 6 shows the heuristic algorithm which determines the optimal index set to be built; finally,
Section 7 draws the conclusions on the work carried out and gives some suggestions for future work.
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2 From logical design to physical design

When DWs are implemented on relational DBMSs (ROLAP), the multidimensional view of data is
achieved by adopting the so-calledstar scheme, or other schemes derived from it [13, 2]. The basic
configuration for a star scheme includes:

• a set ofdimensional tables(DTs), one for each dimension, each characterized by a surrogate pri-
mary key and by a set of attributes, representing the dimension of analysis at different aggregation
levels. DTs are completely denormalized and consequently they do not represent functional de-
pendencies.

• A fact table(FT) whose primary key is obtained by composing the foreign keys referencing the
DTs. With reference to the terminology of the relation theory we callprime the attributes of the
FT that are part of its primary key. Usually the FT also contains other attributes, calledmeasures,
that describe quantitatively each single instance of the fact.

One of the main requirements of the users of DW tools is to minimize the query response time.
For this reason DW design includes, among the others, some phases specifically aimed at reducing the
query response time as much as possible. One of the most effective ways to improve DW performance
is view materialization[8, 1, 23, 2, 5]. A view contains aggregated data obtained from the base FT; the
aggregation level characterizing a view is called itsaggregation patternand consists of a set of attributes
from the DTs.

Because of the exponential dimension of the space of the possible views, materialization techniques
must rely on an algorithm to select an optimal subset of views which satisfies an assigned constraint
on disk space. Usually such algorithms are driven by aworkload, consisting of a set of queries that
are assumed to be representative of the wider set that will be submitted to the system during operation.
Thus, the algorithms determine the set of views that should be materialized to optimize the response to
the workload.

View materialization obviously involves a modification of the DW logical schema. Among the dif-
ferent alternatives proposed in the literature, in this paper we adopt the variant of the classic star scheme
sketched in Figure 1 for the sale example, in which one separate FT is created for each materialized view
and a separate DT is created for each attributeai belonging to the aggregation pattern of at least one
view. The DT forai includes a surrogate key and a field for each attribute functionally dependent onai,
includingai itself.

It should be noted that, in order to make the presence of materialized views transparent to the user,
DBMSs are required to include a component, sometimes calledaggregate navigator, that carries out a
logical pre-optimization selecting for each query the FT that minimizes the access cost (typically, the
smallest one among those on which the query could be solved).

Given the logical scheme of the DW, the goal of this work is to determine the physical scheme by
defining the set of indexes, to be built on both FTs and DTs, that minimizes the workload execution cost
respecting a given space constraint. Unlike previous phases, physical design strongly depends on the
features of the specific DBMS: namely the categories of indexes available, the types of execution plans
generated, the statistics consulted by the optimizer.

The architecture of DWs, in which updates are executed periodically when the system is off-line,
makes the issues related to the updating costs for indexes absolutely marginal. Thus, new classes of
indexes such as bitmap indexes [15], join indexes [15] or projection indexes [22, 16], which in operational
systems are seldom used due to their high update cost, represent for DW designers an extremely valid
instrument to improve performances [21].

Selecting the best indexes to be built is a very hard problem [9, 14]. In particular, the presence of
several materialized views that can solve the same query creates an undesired inter-dependence between
logical and physical design: in fact, the utility of a materialized view may depend on the set of indexes
created on other views. Thus, a perfect algorithm should carry out logical and physical design simul-
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Figure 1: Logical schema consisting of a base FT and one materialized view.

taneously; since this approach is unpracticable in real cases due to its complexity, we will assume for
simplicity that the best view available to solve a query is chosen independently of the physical scheme.

3 Architectural sketch

In this section we describe the functional architecture on which our approach is based. Our solution is
depicted in Figure 2; the elements involved in processing are outlined and, for each of them, the function
carried out is explained.

3.1 Inputs

In the following we briefly list the information we use for index selection:

• DW logical scheme: it describes the table structure and the relationships among them. In partic-
ular, it includes information related to both base tables and views. The logical model is the one
described in Section 2.

• Workload: a set of queriesqi to be executed on the DW, each characterized by a frequency
freq(qi). The queries to be inserted in the workload should be selected according to their im-
pact on the DW performance.

• Data volume: in order to evaluate the query execution cost on a given physical scheme, the opti-
mizer requires quantitative information about data, such as the number of distinct values of each
attribute.

• System constraints: index selection must take the limits imposed by hardware devices into account.
The information used are the available disk space reserved to indexing,S, and the size of the
memory buffer for hybrid hash joins,hb. While the first information is used to define an upper
bound to the number of indexes, the second is used during the evaluation of the workload cost.
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Figure 2: Functional architecture for index selection.
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3.2 Processing

From a functional point of view, our approach features different components, each responsible for a
particular function:

• Aggregate Navigator: given a workload and a logical scheme including one or more materialized
views, this component is in charge of selecting the best view on which each query should be solved.
The aggregate navigator does not usually take indexes into account.

• Selector of Indexable Attributes: based on the structure of the queries, this component determines
which attributes of DTs could be usefully indexed.

• Generator of Candidate Indexes: for each indexable attribute, this component evaluates which
type of index is the most convenient. The indexes selected by this component, defined by couples
(attribute, index type), are calledcandidate indexes.

• Optimal Set Generator: this component implements the algorithm which selects the indexes to be
created. The optimal index set includes a subset of candidate indexes on DT attributes as well as
all the indexes built on primary keys of DTs and FTs.

• Cost Evaluator: it is necessary to both the Generator of Candidate Indexes and the Optimal Set
Generator to evaluate the access cost for each index.

• Execution Plan Generator: given a physical scheme, a query and the FT on which it should be
solved, it returns the best execution plan which solves the query.

3.3 Outputs

Each processing component, given some inputs, returns some outputs which either act as inputs for other
component(s) or are returned as the final solution. Such outputs are summarized in the following:

• Bound Workload: it stores, for each query, a reference to the FT used to solve the query.

• Indexable Attributes: the set of all the attributes that can be usefully indexed to speed up some
queries.

• Candidate Indexes: it stores, for each indexable attribute, the most convenient index type.

• Optimal Indexes: the index set to be built.

3.4 Queries

The queries we consider are modeled asGPSJ(Generalized Projection-Selection-Join) expressions [7].
Briefly, a GPSJ expression is a selectionσ2 over a generalized projectionπ over a selectionσ1 over a
join χ:

σ2 π σ1 χ

whereχ denotes the join among a FT and the related DTs. Selectionσ1 defines a filter on the tuples at the
non-aggregated level, either on the FT measures or on the attributes in the DTs. Generalized projection
π defines the pattern on which tuples have to be aggregated (i.e. the attributes within the GROUP BY
clause in the SQL formulation), as well as the aggregation operators to be used for each measure. Finally,
selectionσ2 expresses a filter on the aggregated measures.

The class of queries we consider restricts GPSJ queries with reference to selections, in particular:

1. σ1 only expresses conditions on DT attributes;

2. selectionsσ2 on aggregated measures are not allowed.
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Selections on measures are not considered since their presence affects the algorithm which selects
the execution plan only if indexes on FT measures are available. Given that measures are usually defined
on numeric domains with high cardinality, it is reasonable to build on them only indexes that store
value ranges instead of single values. Furthermore, in many DBMSs this kind of indexes are not even
implemented.

Thus, the queries we consider have the following form:

πP,M σPred χ

whereP is an aggregation pattern,M is a set of aggregated measures andPred is expressed as a
conjunction of disjunctions of range predicates on DT attributes.

4 The optimizer

A DW usually contains several materialized views and indexes allowing a query to be executed in many
different ways [6]. This section proposes an optimizer model (Execution Plan Generator, EPG) that,
given a query, returns a possible execution plan. The model is closely based on the optimizer of Informix
RedBrick 6.0 [11, 12], whose behavior was determined through a black-box analysis. In the following
we report some preliminary considerations on the indexes and the join algorithms used by our EPG.

Indexes. EPG considers the following index types:

• TID-List Index: for each key value it stores a list of all the tids associated to the tuples assuming
that key value.

• Bitmap Index: for each key value it stores a binary vector including one bit for each tuple in the
table on which the index is built. Each bit is set to 1 if the corresponding tuple assumes that key
value, 0 otherwise.

As shown in Figure 3, both index types use a B+-tree as a support structure to reach either the list or
the bit vector related to a given key value. Each index node and index leaf is stored in one disk page.

In order to simplify the problem of determining the indexes to be built, we introduce some restric-
tions: (1) the only indexes built on two or more attributes are those on the FT primary key, all the others
involve only one attribute; (2) prime attributes are the only indexable attributes in FTs, while all the at-
tributes in DTs are indexable; (3) at most one index can be built on each attribute. Furthermore, a tid-list
index on each primary key of either a FT or a DT is always built in order to allow the DBMS to check
integrity constraints.

Join methods. As to join methods, EPG considers:

• Nested Loops Join with index on inner table: either a FT or a DT can be set as the inner table;

• Hybrid Hash Join[20]: usually the smallest table is chosen as the build table. Since we only
consider joins between a FT and a DT, we will use the DT as the build table and the FT as the
probe table.

4.1 Cost-based vs. rule-based

Given the instruments available to EPG, it is possible to define the criteria it will adopt to analyze the
search space.

Optimizers can be classified in two categories:cost-basedandrule-based. A cost-based optimizer
works by building the set of the feasible execution plans and by computing for each the execution cost
based on the statistics about the database; finally, it selects the plan yielding the lowest execution cost.
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Figure 3: General structure of (a) a tid-list index and (b) a bitmap index.
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On the other hand, a rule-based optimizer uses no statistics about the database and determines the execu-
tion plan my means of a set of heuristic rules based on the database structure (e.g. relationships between
tables, indexes built on attributes, etc.). Therefore, a rule-based optimizer will produce the same exe-
cution plan for two queries that differ only for some constants in the selection predicates, regardless of
their selectivity which may relevantly affect the execution cost.

The RedBrick optimizer will be considered to be rule-based since it does not use statistics while
evaluating the index types and the join algorithms taken into account here (it uses statistics only when
choosing among differentSTAR indexes). An example of a commercial DBMS relying on a cost-based
optimizer is Oracle Enterprise 8.1.7 [18, 19, 17], which however can be forced to use a rule-based opti-
mizer too. Moreover, Oracle allows specific commands calledhints to be issued by the user in order to
force a given execution plan.

Identifying the actual execution plans by a black-box analysis is an hard task that is made even harder
by the degrees of freedom introduced by hints, thus we adopted for EPG the rule-based model inferred
by analyzing RedBrick. Nevertheless, the chosen physical scheme will be valid for cost-based DBMSs
too, since the statistics on data are used to evaluate the cost of execution plans.

4.2 Basic operators for execution plans

A query execution plan is a sequence of elementary operators applied to the database physical scheme.
Each operator models a particular function carried out by the DBMS on either a table or an index,
represented as parameters, and is characterized by an input and an output defined by applying set and
couple constructors to three elemental types:tid (a tuple identifier),value(a value of an attribute),tuple
(a value of a table tuple). Some operators allow to specify a Boolean predicate to filter the output.

We will sequence operators by means of arrows; the sequenceO1 → O2 denotes that the output
produced byO1 is consumed byO2. Two operators can be sequenced only if the output of the first
includes the input of the second. In particular, the sequenceO1 → O2 is correct if any combination of
the following criteria occurs:

• O1 returns a list andO2 consumes an element belonging to that list.

• O1 returns a tuple andO2 consumes a value of an attribute belonging to the tuple.

• O1 returns a set andO2 consumes one of its elements, denoting thatO2 will consume separately
and progressively each single element produced byO1.

• O1 returns a set andO2 consumes a set of the same type, denoting thatO2 is called only once to
consume the whole set of elements produced byO1.

Finally, in some cases the execution of two or more subsequences must be considered to be concur-
rent; we will denote concurrency by enclosing the subsequences in parentheses, and separating them by
commas. Thus, sequenceO1 → (Oc1 , . . . , Ocm) → On is correct if:

• each sequenceO1 → Oci is correct according to the rules above; and

• the input toOn is either a couple or a set of the outputs of theOcis.

Depending on their possible positions inside a plan, operators can be classified into three categories
as follows; for each operator, the input accepted and the output produced are denoted.

1. Starters, all the operators that always appear at the beginning of an execution plan:

• Table Scan,
TS(table)pred −→ {tuple}

which sequentially scanstable verifying for each row the condition expressed bypred. In
output it returns the set of all the tuples that satisfypred.
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• Index Scan,
XS(index)pred −→ {tid}

which considers the condition expressed inpred as a disjunction of elementary range con-
ditions, and for each accessesindex using the lowest value in the range as the key. Once it
reaches the index leaves, it scans them until the highest value in the range is reached. Finally,
it returns the set of tids of the rows that satisfypred.

2. Linkers, all the operators that always appear in intermediate positions:

• Table Access,
tid −→ TA(table)pred −→ (tid, tuple)

which directly accessestable to get the tuple related to the input tid, which is returned only
if it satisfiespred.

• Index Access,
value −→ XA(index) −→ {(tid, value)}

which accessesindex with a given value for the index key, and returns a set of couples{(tid,
value)} each associating that key value with the tid of a tuple yielding that value.

• Hash Join,

({tuple1}, {tuple2}) −→ HJ(table1, table2) −→ {(tid, tuple)}

which carries out the natural join between two sets of tuples using the hybrid hash join
algorithm. Parameterstable1 and table2 are, respectively, the build and the probe tables.
The output is a set of couples each combining a tuple returned by the join and the related tid
of the probe table. In this context, the FT is always the probe table while the build table is
one of the DTs.

• TID Intersection,

{{tid1}, . . . , {tidn}} −→ TI(table) −→ {tid}

which receives as input at least two sets of tids, builds their intersection and returns it. The
parameter is the table the tids refer to.

3. Terminators, all the operators that always appear at the end of an execution plan. For the class of
queries we consider this set set contains one operator only:

• Aggregation,
{tuple} −→ AG() −→ {tuple}

which concatenates and groups the tuples in input.

4.3 Analysis of execution plans

The grammar defining the feasible execution plans forEPGcan be defined as follows1:

1Square brackets denote sequences of symbols. Symbols ‘*’ and ‘+’ mean, respectively, that a sequence is repeated 0 o
more times and 1 or more times
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ExecutionP lan ::=FTaccess[→ DTsAccess] → AG()
FTaccess ::=TS(FT) | DThashFT | FTXaccess → TA(FT)

DTsAccess ::=(XA(KDTX) → TA(DT)[, XA(KDTX) → TA(DT)]∗)
DThashFT ::=(DTaccess,TS(FT)) → HJ(DT, FT)
FTXaccess ::=DTaccess → XA(FTX) |

([DTaccess → XA(FTX) | DThashFT ]
[,DTaccess → XA(FTX) | DThashFT ]+) → TI(FT)

DTaccess ::=TS(DT)Pred | DTXaccess → TA(DT)Pred
DTXaccess ::=XS(DDTX)Pred |

(XS(DDTX)Pred[, XS(DDTX)Pred]
+) → TI(DT)

where:

FT is a FT;

DT is a DT;

Pred is a condition expressed on DT attributes;

FTX is an index built either on the FT primary key or on a FT prime attribute;

DDTX is an index built on a DT attribute;

KDTX is an index built on a DT primary key.

Figure 4 represents the possible sequencing of operators within an execution plan.

Example. Let us consider the following string representing a query execution plan:

TS(DT1)Pred → XA(FTX) → TA(FT) → (XA(KDTX2) → TA(DT2), XA(KDTX3) → TA(DT3)) → AG()

whereFTX is an index onFT whose first attribute is the key referencingDT1; KDTX2 andKDTX3 are the
indexes on the primary keys ofDT2 andDT3, respectively. The plan, shown in Figure 5, starts with
the sequential scan ofDT1 in order to apply the filter expressed inPred. Then, for each tuple ofDT1
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Figure 5: Graphical representation of an execution plan.

satisfyingPred, FTX is accessed and the resulting tids are used to retrieve theFT tuples. For each of the
tuples selected inFT, DT2 andDT3 are joined, accessing the primary key index first, then retrieving the
tuple using the tid retrieved from the index. Finally, the joined tuples are grouped.

4.4 Selection of an execution plan

Figure 6 sketches the flow-chart describing the algorithm used in EPG to select an execution plan for
query πP,M σPred (FT 1 DT1 1 · · · 1 DTn). It should be noted that the join betweenFT and
DTi (whenFT is external andDTi is internal) is always executed by accessing, for each tuple ofFT
that satisfies the conditions specified in the query, the index built on theDTi primary key. The final
aggregation onP (expressed in SQL by the GROUP BY clause) is common to all the execution plans,
thus we will not consider it.

The decision flow is mainly determined by the number of DTs on which at least one condition is
expressed, which are calledconditionedDTs:

• If no conditioned DT are present,FT is sequentially scanned then joined with all the DTs involved
in the query.

• If only one conditioned DT is present,DTc, EPG checks if there is an index allowing to access
FT from its foreign key referencingDTc (it may be either a single-attribute index on the foreign
key or an index on the primary key ofFT where the foreign key is in the first position). If so, for
each tuple ofDTc that satisfies the selection predicatePred, EPG accesses this index and then
FT . Otherwise, an hybrid hash join betweenDTc filtered byPred andFT is executed. In both
cases, the result is eventually joined with the other DTs.

• If there are two or more conditioned DTs, for each of them EPG decides how to carry out the join
with FT (nested loops if there is an index on the corresponding foreign key inFT , hybrid hash
otherwise). Each join returns the subset of FT tids whose related DT tuple satisfiesPred. The tid
sets obtained from the different conditioned DTs are then intersected, and the resulting tuples of
FT are accessed.

As to conditioned DT access, the plan changes according to the set of indexes and attributes interested
by the query predicate as shown in Figure 7. The number of DT attributes on which a filter is defined
and an index is built,α, drives the choice of the plan as follows:

1. If α = 0, a sequential scan of the DT is executed, applying the filter to each tuple.

2. α = 1 means that an index on a conditioned attribute is built. In this case an index scan is executed
and, for each tid retrieved, the DT is accessed. The tuples retrieved can be further filtered by
applying conditions expressed on other DT attributes to them.
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Figure 6: Flow-chart for selecting the best execution plan for a query.
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System information
b disk page size in bytes
hb size in bytes of the buffer used for hybrid hash join

Table statistics
NT number of tuples
t tuple size in bytes

NP number of disk pages
Index statistics

NK number of distinct key values
NT overall number of tids stored
NL number of leaves (see Fig. 3)
H height of the B+-tree (see Fig. 3)

NB number of disk pages to store a bitmap

Table 1: Statistics used by the cost evaluator.

3. If α ≥ 2, all indexes on conditioned attributes are accessed, the tid sets obtained are intersected,
possibly further filters are applied, and finally the DT is accessed.

5 The cost model

In order to compare different physical schemes, a cost model is necessary to evaluate each execution
plan. According to the cost model adopted in this paper, the cost of a plan is expressed as the number of
logical pages that must be read to execute it [10, 9, 3].

Evaluating the cost of a plan requires a cost function for each single operator appearing in it; this cost
may depend on the output of the previous operator, in particular on its cardinality. The cost of the full
plan is the sum of costs of all its operators. Table 1 reports the information required by the cost model,
divided in two categories: system information and database statistics.

In the following, the cost function and the output cardinality are reported for each operator (except
AG which is assumed to have a null cost). Functionsel(Pred) returns the portion of tuples satisfying
Boolean predicatePred; functionint rounds to the nearest integer.

• TS(table)Pred

cost = NP

#output = NT ∗ sel(Pred)

• XS(index)Pred

cost =





∑
∀RangePred(H + dNL ∗ sel(RangePred)e) , if index is a tid-list;∑
∀RangePred(H + dNL ∗ sel(RangePred)e)

+int(NK ∗ sel(RangePred)) ∗NB , if index is a bitmap

#output = NT ∗ sel(Pred)

• TA(table)Pred

cost = NP ∗
(

1−
(

1− 1
NP

)#input
)

#output = #input ∗ sel(Pred)
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• XA(index)

cost =

{
#input ∗ (

H +
⌈

NL
NK

⌉)
, if index is a tid-list;

#input ∗ (H + 1 + NB) , if index is a bitmap

#output = #input ∗ NT

NK

• (#input1, #input2) → HJ(table1, table2)

#HashPartitions =
⌈

#input1 ∗ t

hb

⌉

cost =

{
0 , if #HashPartitions = 1⌈

#input2∗t2
b

⌉
∗#HashPartitions , otherwise

#output =
#input1

NT1
∗#input2

• (#input1, . . . ,#inputn) → TI(table)

cost = 0

#output =
#input1

NT
∗ . . . ∗ #inputn

NT
∗NT =

∏
i #inputi
NTn−1

Example. Consider the following execution plan:

TS(DT1)Pred → XA(FTX) → TA(FT ) →
→ (XA(KDTX2) → TA(DT2), XA(KDTX3) → TA(DT3)) → AG()

executed on a database with the following statistics:

NPDT1 = 368, NTDT1 = 50000
HFTX = 2, NLFTX = 8000, NKFTX = 1000000

NTFT = 10000000, NPFT = 85470
HKDTX2 = 1, NLKDTX2 = 5
NTDT2 = 4000, NPDT2 = 50

HKDTX3 = 2, NLKDTX3 = 1250
NTDT3 = 1000000, NPDT3 = 9804

sel(Pred) = 0.3
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For each single operator we have:

TS(DT1)Pred : cost = 368
#output = 50000 ∗ 0.3 = 15000

XA(FTX) : cost = 15000 ∗
(

2 +
⌈

8000
1000000

⌉)
= 45000

#output = 15000 ∗ 10000000
1000000

= 150000

TA(FT ) : cost = 70692
#output = 150000

XA(KDTX2) : cost = 150000 ∗
(

1 +
⌈

5
4000

⌉)
= 300000

#output = 150000 ∗ 4000
4000

= 150000

TA(DT2) : cost = 50

XA(KDTX3) : cost = 150000 ∗
(

2 +
⌈

1250
1000000

⌉)
= 450000

#output = 150000 ∗ 1000000
1000000

= 150000

TA(DT3) : cost = 9804

Thus, the total cost of the plan turns out to be:

cost = 368 + 45000 + 70692 + 300000 + 50 + 450000 + 9804 = 875914 pages

6 The index selection algorithm

Due to its high complexity, the index selection problem is usually faced heuristically. As already stated,
the view used to solve a query is selected during logical design, which is carried out neglecting the issues
related to indexing.

An attributea ∈ DT is said to beindexableif at least one query in the workload expresses a condition
ona and is solved on an FT linked toDT 2. A prime attributea ∈ FT , a referencingDT , is indexable
if at least one query in the workload expresses a condition on an attribute inDT and requires data stored
in FT . The queries that makea indexable are called thesupportfor a.

Indexable attributes and primary keys of tables are the only elements that may be indexed. It should
be noted that indexing an indexable attribute does not necessary lead to a performance improvement; on
the other hand, if an index on an indexable attribute is built, the execution plans for all the queries in its
support will use that index.

It is remarkable that, in the physical scheme, each index is independent of the others. In fact, given
an indexIX on an indexable attribute whose support contains queryqi, EPG will always useIX in
the same way and with the same cost regardless of the contemporary presence of other indexes. The
contribution ofIX to the execution cost ofqi, qCost(IX, qi), depends on the table on whichIX is bult.
If IX is built on a DT attribute, it is accessed by a scan driven by the selection predicate ofqi:

qCost(IX, qi) = cost(XS(IX)Predi)

If IX is built on a prime attribute of the FT, it is accessed once for each of theET tuples of the DT that
satisfy the selection predicate:

qCost(IX, qi) = cost(XA(IX)) · ETPredi

2The same attributea may appear on several DTs due to view materialization.
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Now, it is possibile to define forIX a total costits global contribution to the workload cost, computed
as the weighted sum of its contributions to the single queries:

tCost(IX) =
∑
qi

freq(qi) · qCost(IX, qi)

and aweighted costas its size in disk pages,sizeP (IX), times its total cost:sizeP (IX) · tCost(IX).
The weighted cost is used to compare different types of indexes (tid-list and bitmap) built on the same
attribute. Thus, for each indexable attributea, the corresponding candidate indexIX = (a, index type)
is the one whose weighted cost is minimal.

Usually designers reserve a fixed disk spaceS to store indexes; such space can be partitioned into
three parts whose sizes are defined a priori: (1) one part,SKDT , for indexes on DT primary keys;
(2) one part,SKFT , for indexes on FT primary keys; and (3) the remaining part,Sfree, for all the
other indexes. We assume that only tid-list indexes are built on primary keys and that primary keys of
DTs are surrogated, so thatSKDT can be easily calculated. Also the space contributionSKFT can be
easily computed a priori since the size of each index on the primary key of a FT only depends on the
number of prime attributes, not on their ordering. Finally, the space contribution for other indexes is
Sfree = S − SKDT − SKFT .

The pseudo-code for the index selection algorithm is proposed in the following.C andO represent,
respectively, the set of candidate indexes and the set of optimal indexes, i.e. those actually built.

procedureBuildOptimalIndexSet()
{ C = initializeC(); // initialization of the set of candidate indexes

O = initializeO(); // initialization of the set of optimal indexes
Sfree = S − SKFT − SKDT ; // expressed in disk pages
while (∃IX ∈ C : sizeP (IX) ≤ Sfree) do
{ IXmax = argmax{IX∈C:sizeP (IX)≤Sfree}{benefitPerPage(IX,O)};

O∪ = {IXmax};
C− = {IXmax};
Sfree− = sizeP (IXmax);
if ∃FT : attr(IXmax) ∈ prime(FT ) and ∀ai ∈ prime(FT )∃IX ∈ O : ai = attr(IX)
{ IXmin = argmin{IX∈O:attr(IX)∈prime(FT )}{decayPerPage(IX)};

O− = {IXmin};
Sfree+ = sizeP (IXmin);
O∪ = {multInd(attr(IXmin))};

}
}
for eachFT : O does not contain any index on the primary key ofFT

if ∃IX ∈ C : attr(IX) ∈ prime(FT )
{ IXmin = argmin{IX∈C:attr(IX)∈prime(FT )}{benefitPerPage(multInd(attr(IX)), O)};

C− = {IXmin};
O∪ = {multInd(attr(IXmin))};

}
else
{ a = any prime not indexable attribute ofFT ;

O∪ = {multInd(a)};
}

}

where:

• initializeC() returns the setC of candidate indexes for the workload. The set includes, for each
indexable attribute, the most useful candidate index selected according to its weighted cost.
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• initializeO() initializes the set of the optimal indexes,O. For each DT, it inserts inO a tid-list
index built on the primary key.

• sizeP (IX) returns the size ofIX in disk pages.

• attr(IX) returns the ordered list of the attributes on whichIX is built.

• prime(FT ) returns the set of prime attributes ofFT .

• multInd(a): given a prime attributea of FT , this function returns a (multiple) tid-list index on
the primary key ofFT whose first attribute isa. The order of the other attributes is not interesting.

• benefitPerPage(IX,O) returns the relative benefit ofIX, estimated as

benefitPerPage(IX, O) =
wklCost(O)− wklCost(O ∪ {IX})

sizeP (IX)

wherewklCost(O) is the execution cost, expressed in disk pages, for the whole workload when
the indexes inO are built.

• decayPerPage(IX): given indexIX on attributea, this function returns the relative performance
decay due to transformingIX from single-attribute to multiple-attribute index:

decayPerPage(IX) =
tCost(multInd(a))− tCost(IX)

sizeP (IX)

The algorithm can be subdivided into three distinct sections. The first one initializes the sets of
candidate and optimal indexes as well as the available space for indexes on non-prime attributes,Sfree.

The second section, delimited by the while loop, carries out a greedy selection of indexes fromC
based on the benefit per index page. If, after inserting a new index inO, it turns out that all the prime
attributes of a FT are indexed, one of these indexes can be transformed into a multiple-attribute index on
the FT primary key; the choice is driven by the decay per index page related to the transformation. It
should be noted that the decay per index page can be computed by comparing the total costs since it is
used to decide which single-attribute index on a prime attribute of the FT should be transformed into a
multiple index on the FT primary key, and this transformation does not affect execution plans. On the
other hand, the benefit per index page must be computed with reference to the whole workload cost since
dropping an index fromO may radically impact on the execution plans adopted.

Once all indexes have been selected, the third section sets up the primary key indexes for the remain-
ing FTs. If, for a given FT, a non-empty set of candidate indexes still exists, the one whose insertion
in O as a multiple-attribute index on the primary key is cheapest is chosen. Otherwise, a non-indexable
attribute is randomly chosen to build the multiple index.

7 Conclusions

In this paper we proposed a heuristic approach to the problem of index selection in a data warehouse with
materialized views. Obviously, the approach devised needs to be implemented and extensively tested to
evaluate its benefit, and to be characterized in terms of its computational complexity; these goals will be
achieved during the next phase of the project.

Future work on this topic includes considering other types of indexes (e.g. indexes on two or more
tables such as join and star indexes) and join algorithms (e.g. sort merge).
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