D21

Integrazione, Warehousing e Mining di sorgenti eterogenee
Programma di ricerca (cofinanziato dal MURST, esercizio 2000)

Techniques for logical design and efficient querying of
data warehouses

P. CIACCIA, M. GOLFARELLI, A. MAZZITELLI, S. R1zzI, F. SCARCELLO
D2.R4 2 gennaio 2002

Sommario

Logical design of data warehouses (DW) encompasses the sequence of steps which, given a core work-
load, determine the logical scheme for the DW. A key step in logical design is view materialization. In
this paper we propose an original approach to materialization in which the workload is characterized
by the presence of complex queries represented by Nested Generalized Projection/Selection/Join expres-
sions, in which sequences of aggregate operators may be applied to measures and selection predicates
may be defined, at different granularities, on both dimensions and measures. Then, we propose a novel
approach to estimate the cardinality of views based on a-priori information derived from the applica-
tion domain. We face the problem by first computing satisfactory bounds for the cardinality, then by
determining a good probabilistic estimate for it. The results we present here concern the computation of
upper bounds for the cardinality of a view considering a set of cardinality constraints expressed on some
other views. Finally, we deal with the problem of populating and refreshing the data warehouse, which
typically involves queries spanning several tables over the reconciled schema. We present a structural
method, based on the notion of hypertree decomposition, for solving these queries efficiently. Then, we
extend this method in order to take into account also quantitative information on the data values.

Tema Tema 2: Progettazione e interrogazione di Data Warehouse
Codice D2.R4
Data 2 gennaio 2002
Tipo di prodotto Rapporto Tecnico
Numero di pagine 34
Unita responsabile BO
Unita coinvolte CS
Autore da contattare Stefano Rizzi
DEIS
Universita di Bologna
Viale Risorgimento 2, 40136 Bologna, Italia
srizzi@deis.unibo.it

Techniques for logical design and efficient querying of data
warehouses

P. Ciaccia, M. Golfarelli, A. Mazzitelli, S. Rizzi, F. Scarcello

2 gennaio 2002

Abstract

Logical design of data warehouses (DW) encompasses the sequence of steps which, given a
core workload, determine the logical scheme for the DW. A key step in logical design is view ma-
terialization. In this paper we propose an original approach to materialization in which the work-
load is characterized by the presence of complex queries represented by Nested Generalized Pro-
jection/Selection/Join expressions, in which sequences of aggregate operators may be applied to
measures and selection predicates may be defined, at different granularities, on both dimensions and
measures. Then, we propose a novel approach to estimate the cardinality of views based on a-priori
information derived from the application domain. We face the problem by first computing satisfac-
tory bounds for the cardinality, then by determining a good probabilistic estimate for it. The results
we present here concern the computation of upper bounds for the cardinality of a view considering
a set of cardinality constraints expressed on some other views. Finally, we deal with the problem
of populating and refreshing the data warehouse, which typically involves queries spanning several
tables over the reconciled schema. We present a structural method, based on the notion of hypertree
decomposition, for solving these queries efficiently. Then, we extend this method in order to take
into account also quantitative information on the data values.

1 Introduction

A data warehouse (DW) is a repository which provides an integrated environment for decision sup-
port. From a conceptual point of view, a DW is organized according to the so-called multidimensional
model[2]; thus, it represents facts of interest for the decision process into cubes in which each cell con-
tains numerical measures which quantify the fact from different points of view, while each axis represents
an interesting dimension for analysis. For example, in a sales cube modeling a chain store, time, product
and store are typical dimensions while quantity sold and retail price are measures. On the other hand,
within a 4-dimensional cube modeling the phone calls supported by a telecommunication company, the
dimensions might be the calling number, the number called, the date, and the time segment in which the
call is placed; each cube cell could be associated to a measure of the total duration of the calls made from
a given number to another number on a given time segment and date.

The basic mechanism to extract significant information from the huge quantity of fine-grained data
stored in base cubes is aggregation according to hierarchies of attributes rooted in dimensions [32],
which produces aggregate cubes called views. Within a view, the values of measures are summarized
according to some aggregation pattern, i.e., to a set of attributes defining the coarseness of aggregation;
in particular, they are obtained by applying one or more aggregation operators to the data in the base fact
table or in another view with a finer pattern. In most application cases, cubes are significantly sparse (for
instance, most couples of telephone numbers are never connected by a call in a given date), and so are
the views.

Logical design of data warehouses (DW) encompasses the sequence of steps which, starting from
the conceptual scheme and given a core workload and the target logical model, determine the logical
scheme for the DW. While during conceptual design the designer decides which portion of the application

domain is to be included in each data mart, and how data marts will be perceived and accessed by final
users, during logical design (s)he defines which structures will be used to store information and how
their performance can be optimized. It is important to emphasize that logical design of DWs requires
completely different techniques than those used for operational databases, since their characteristics and
objectives are deeply different. The target logical model we consider here is the relational model.

A key step in optimizing the performance of relational DWs consists in materializing a set of views
which the system can use to solve the workload more efficiently. Of course, the larger the number of
queries a view can be used to answer, the more effective materializing it[11, 59]. Since pre-computing all
the possible views is unfeasible, several techniques to select an appropriate subset of views to materialize
have been proposed. While most approaches only focus on the aggregation patterns required by queries,
very few works analyze how the presence of different operators affects aggregation. On the other hand,
using only one operator (typically, the sum) to aggregate measures when materializing views, makes
them useless for several queries.

In this paper we propose an original approach to materialization in which the workload is character-
ized by the presence of complex queries which cannot be effectively described only by their aggregation
pattern. In particular, we consider queries represented by Nested Generalized Projection/Selection/Join
(NGPSJ) expressions, in which sequences of aggregate operators may be applied to measures and selec-
tion predicates may be defined, at different granularities, on both dimensions and measures. As a result,
the correspondence between measures in the views and in the base cube is not necessarily one-to-one:
some measures in the base cube may not be present at all in a view, while others may correspond to sev-
eral measures in the view; furthermore, additional (either support or derived) measures may be included
in the view in order to correctly compute aggregations. Particular emphasis is given to the effects on
materialization of the contemporary presence of multiple aggregation operators in a query. Under these
assumptions, an efficient algorithm to determine the restricted set of views which could be usefully mate-
rialized (candidate views) is proposed. The algorithm builds a query view graph whose vertices represent
candidate views and whose arcs denote the possibility of computing a view from another. The query view
graph may then be fed into an optimization algorithm like the ones proposed in [28, 30] which select,
from the set of the candidate views, the subset which minimizes the response to the workload under a
given space constraint.

A crucial problem related to view materialization is that of accurately estimating the actual cardinality
of each view [57, 53]. Since the number of possible views which can be derived by aggregating a cube is
exponential in the number of attributes, most approaches assume that a constraint on the total disk space
occupied by materialization is posed, and attempt to find the subset of views which contemporarily
satisfies this constraint and minimizes the workload cost [18, 28, 33]. Another case where estimation of
view cardinalities is relevant is index selection [29].

If the data warehouse has already been loaded, view cardinalities can be quite accurately estimated by
using statistical techniques based, say, on histograms [42] or sampling [34]. However, such techniques
cannot be applied at all if the data warehouse is still under development, and the estimation of view
cardinalities is needed for design purposes. To obviate this, current approaches are based on estimation
models that only exploit the cardinality of the base cube and that of the single attribute domains [45, 52],
which however leads to significant overestimation.

In this paper we propose a novel approach to estimate the cardinality of views based on a-priori infor-
mation derived from the application domain. Similarly to what is done when estimating the cardinality of
projections in relational databases [10], we face the problem by first computing satisfactory bounds for
the cardinality, then by capitalizing on these bounds to determine a good probabilistic estimate for it. The
results we present here concern the computation of upper bounds for the cardinality of a view considering
the functional dependencies between attributes of the multidimensional scheme and a set of cardinality
constraints expressed on some other views. In particular, we propose a bounding strategy which achieves
an effective trade-off between the tightness of the bounds produced and the computational complexity,
and outline a branch-and-bound approach to compute it.

The cubes are populated by periodically launching batch queries on the reconciled operational database.

These queries acquire data of interest, rearrange them to comply with the multidimensional model, and
possibly groups them to the required granularity. Differently from OLAP queries on the star schemes,
feeding queries typically span on several tables in the reconciled scheme in order to update both dimen-
sion and fact tables; this is particularly true, since dimension tables are denormalized, if the attribute
hierarchy they represent is large. As the warehouse is refreshed while off-line, querying efficiency be-
comes a relevant issue. Query optimizers based on quantitative methods examine a number of alternative
plans for answering a given query and then choose the best one, according to some cost model and
the available information on the data. A completely different approach to query answering is based
on the identification of some structural property of queries (e.g., acyclicity), rather than on quantita-
tive information about data values. Exploiting such properties is possible to answer large classes of
queries in polynomial-time. We first show how to employ the structural notion of hypertree decompo-
sition [22, 25, 50] for the efficient answering of queries having bounded hypertree width, and how to
compute optimal hypertree decompositions. Then, we describe a technique that combines quantitative
and structural methods, by exploiting the notion of hypertree decomposition for restricting the search
to well-structured query plans that guarantee a polynomial-time upper bound, and data information for
selecting those plans that minimize the estimated execution-time (w.r.t. to a given cost model).

The paper is organized as follows. Section 2 describes our approach to view materialization. Section
3 discusses the problem of estimating the cardinality of views. Section 4 deals with the optimization of
queries for populating and refreshing data warehouses. Finally, Section 5 discusses the most interesting
open issues.

2 View Materialization

In this section, our approach to materialization of NGPSJ views is described. After proposing a moti-
vating example and briefly reviewing some related literature, we define NGPSJ expressions, outline the
algorithm for determining candidate views and finally show some experimental results.

2.1 Background and Motivating Example

Definition 1 (Cube) We call cube C a triple (U, I, M) where U is a set of attributes, ' = {A; —
A;|A;, A; € U} is a set of functional dependencies which relate the attributes of U into a set of pairwise
disjoint directed trees (hierarchies), and M is a set of measures. We call dimensions the attributes
Ay, € U in which the trees are rooted, i.e., such thatVA; € U (A; — Ay) € F'; let dim(C) C U denote
the set of dimensions of C.

A cube implemented on a relational DBMS is usually organized according to the so-called star
scheme [35], composed by one fact table containing the measures and one denormalized dimension
table for each dimension of analysis.

Definition 2 (Pattern) A pattern on cube C = (U, F, M) is a subset of attributes P C U such that
VA;,Aj € P (A; — A;) € F, where Ft denotes the set of all functional dependencies logically
implied by IF. We define on the set of all patterns on C a partial ordering called roll-up, denoted by <,
such that P; < P; iff P; — F;.

Definition 3 (View) Given a cube C and a pattern P on it, a view on C at pattern P is a cube C' such
that (1) dim(C') = P; (2) the attributes and the functional dependencies are those included into the
subtrees of the hierarchies of C rooted in the attributes of P; (3) the measures are defined by applying
expressions to the measures in C.

Example 1 The Sales cube includes three hierarchies: Time, Store and Product.

U = {TDay, TMonth, TYear, PName, PType, PCategory, SName, SCity}

F = {TDay — TMonth, TMonth — TYear, SName — SCity, PName — PType,
PType — PCategory}

M = {Qty, Prc}

thus having dim(Sales) = {TDay, SName, PName}. Examples of patterns are P; =
{TMonth, SCity, PType}, P, = {TYear, SName}, and P3 = {PCategory}; the only roll-up relationship
between these patterns if P3 < Pj. The star scheme modeling the Sales cube is defined below:

PRODUCT (Productld, PName, PType, PCategory)
STORE(Storeld, SName, SCity)

TIME(Timeld, TDay, TMonth, T Year)
SALE(Timeld, Storeld, Productld, Qty, Prc)

Tuples in dimension tables are identified by surrogate keys; in the rest of the paper, for the sake of
simplicity, surrogate keys will not be considered, assuming that tuples are identified by an attribute of
the hierarchy. The simplest example of view on pattern {T Year, SName} is that whose fact table is
defined by the following SQL query:

SELECT TIME.TYear,STORE.SName,SUM(Qty),SUM(Prc)
FROM SALE,TIME,STORE

WHERE SALE.Timeld = TIME.Timeld

AND SALE.Storeld = STORE.Storeld

GROUP BY TIME.TYear,STORE.SName O

Consider the following queries on the Sales cube:

e ()1: “For each product, find the average selling price and the maximum total quantity sold for the
stores which sold more then 1000 units of that product”

e ()5 “For each month and for each type of food product, find the average selling price and the total
revenue”

e (J)3: “For product of type beverage and for each year, find the total quantity sold and the average
of the total monthly revenues”

Query () requires to first aggregate data on pattern {SName, PName}, calculating the average price
and the sum of the quantities sold, then to select the stores for which this sum is greater than 1000, finally
to further aggregate on {PName} calculating the maximum quantity and the average price. Query () 5 ag-
gregates foodstuff sales on { TMonth, PType}, calculating for each month the average price and the sum
of the derived measure R = Qty x Prc. Query ()3 requires to aggregate on { TMonth, PName} calculat-
ing the monthly sums of the quantities and that of the revenues, then to aggregate on {T Year, PName}
calculating the sums of the monthly quantities and the averages of the monthly revenues.

These examples give rise to some considerations:

1. Different aggregate operators may be applied to the same measure (e.g., SUM(Qty), MAX(Qty)).
2. Sequences of aggregate operators may be applied to a measure (e.g., the maximum of the sums).

3. Some aggregations may require support measures in order to be correctly calculated from partial
aggregates (e.g., the average operator requires the cardinality of each partial aggregate).

4. Calculating a derived measure from its component measures may determine a wrong result if the
query is not solved directly on the base cube (e.g., SUM(Qty) x AVG(Prc) # SUM(Qty X Prc)).

In all these cases, in order to take full advantage of materialization, it may be necessary to include
additional measures in views. Besides, the results of aggregation are affected by the selections which
operate on its source data.

2.2 Related Literature

Several works adopt graph-like structures to represent views, but a few focus on how to build it. In [54]
an algorithm to build a multiquery graph is outlined; the approach deals with the problem of building
base fact tables from operational databases. Besides, since only join, selection and classical projection
operators are involved, and no aggregation semantics is introduced, the approach cannot be used to
determine aggregate views.

The approach which is most closely related to ours is the one described in [3]. That work is improved
by ours with reference to the class of queries considered (GPSJ queries with distributive operators vs.
NGPS]J queries with distributive, algebraic and holistic operators) and to the computational cost of the
graph-building algorithm. In [3] the complexity is always exponential since, for each query, all the
possible evaluation strategies are built and organized into a graph; the query view graph is then obtained
by applying a set of rules that prune non-candidate views. The complexity of our algorithm is exponential
only in the worst case, to become polynomial in the best case.

Query nesting is considered in [46], where subqueries involve multiple dependent aggregates at mul-
tiple granularities (multi-feature cubes). Though interesting results concerning distributive and algebraic
cubes are provided, the queries considered are quite different from NGPSJ queries, since no nesting of
distinct aggregation operators at different granularities is possible.

2.3 Query Modeling

In principle, the workload for a DW is dynamic and unpredictable. A possible approach to cope with this
fact consists in monitoring the actual workload while the DW is operating. Otherwise, the designer may
try to determine a core workload a priori: in fact, on the one hand, the user typically knows in advance
which kind of data analysis (s)he will carry out more often for decisional or statistical purposes; on the
other, a substantial amount of queries are aimed at extracting summary data to fill standard reports.

Basically, the approaches to view materialization differ in the level of detail they adopt to model
the queries in the workload. Some approaches only consider the aggregation patterns [4], while others
analyze the query features in more detail [28].

Our approach falls in the second group; in particular, we consider queries represented, in the re-
lational algebra, by nested GPSJ expressions. A GPSJ (Generalized Projection / Selection / Join) ex-
pression [27] is a selection o over a generalized projection 7 over a selection o over a set of joins x:
o1mogx. The generalized projection operator, 7 par(R), is an extension of duplicate eliminating pro-
jection, where P denotes a pattern, i.e., the set of group-by attributes, and M denotes a set of aggregate
operators applied to the attributes in K. Thus, GPSJ expressions extend select-joins expressions with
aggregation grouping and group selection.

Nesting GPSJ expressions means using the result from an expression as the input for another; it adds
expressive power to GPSJ expressions since it allows sequences of aggregate operators to be used on a
measure. For instance, the queries in Section 2.1 can be formulated on the Sales star scheme as follows:

Ql: 7TPName,WAVG(P,C),I\/IAX(Q)(O-Q<1000(ﬂ-F’Name,SName,Q:SUI\/I(Qty),P:AVG(Prc),C:COUNT(*)(JS)))
Q2 TPType, TMonth,AVG(Prc),SUM(Qty-Prc) (TPCategory="Foodstufts' (JS))

QS : ﬂ-TYear,PName,SUM(Q),AVG(R)(ﬂ-TYear,Tl\/lonth,PName,Q:SU|\/|(Qty),R:SUM(QtyPrc) (UPType:’BeV’ (JS)))

where JS = SALE < PRODUCT 1 TIME 1 STORE and WAV G/(m, w) computes the weighted
average of measure m based on the weights w. The SQL formulation of J; is the following:

SELECT PN,SUM(P*C)/SUM(C),MAX(Q)
FROM (SELECT PRODUCT.PName AS PN,STORE.SName AS SN,
SUM(SALE.Qty) AS Q,AVG(SALE.Prc) AS PCOUNT(*) ASC

FROM SALE,PRODUCT,TIME,STORE
WHERE (...join conditions...)
GROUP BY PRODUCT.PName,STORE.SName)

WHERE Q > 1000

GROUP BY PN

The expressions above are in normal form [27], i.e.:

e the necessary joins are pushed below all projections and selections;
e projection and selections are coalesced as much as possible;

o selections on dimensional attributes are pushed below all projections and selections on measures.

Let cube C be modeled as a star scheme with base fact table /1" and dimension tables DT, ... DT,,.
An NGPSJ expression in normal form on C is structured as follows:

E: opream, (mp, M, (- o OPreanty (TP My (OPredAnPredis (1))
where:

e M; (j =1,...h)is aset of aggregate measures, each defined as O P(m1, M4z, ,) Where OP is
an aggregate operator, mazop is the number of arguments of O P and m; is an algebraic expres-
sion involving measures in M ;_;; My denotes the set of measures in C.

e PredM; (j =0,...h) is a conjunction/disjunction of Boolean predicates expressed on measures
in M;.

e P (j=1,...h)isapattern;itis P;;; < Pjforj=1,...h — 1.
e PredA is a conjunction/disjunction of Boolean predicates expressed on attributes of C.

o J=FTaDTy...:x DT,

From a logical point of view, an NGPSJ expression I on cube C defines a view on C whose set of
dimensions and set of measures correspond, respectively, to the pattern Py, and to the measures returned
by the outer (leftmost) projection of £. Expression F itself defines a semantics for the measures returned.
From this point of view, the base cube C is defined by the trivial NGPSJ expression F'T" <1 DTy ... <
DT,.

We wish to emphasize that, in this paper, we are not interested in determining optimal execution
plans. Expressions are written in normal form for the sake of clarity and in order to simplify their
management in the algorithm for building the query view graph; the order in which operators appear
within the expressions does not reflect the execution plans that will be used to calculate them. For
instance, pushing all the joins below the other operators would obviously be inefficient in several cases,
and pushing some projections/selections down might be highly preferable.

For the same reason, we will assume for simplicity that the fact table is always joined to all the
dimension tables (though in some queries, depending on the pattern required, it may be possible to omit
one or more of them; see (01, (J2 and (J5 for instance). As to projections, consistently with the definition
of pattern we will write them in a concise form by dropping all the attributes functionally determined by
other attributes. For instance, () 3 will be rewritten in concise form as

Qs : FTYear,PName,SUM(Q),AVG(R)(ﬂ'TMonth,PName,Q:SUM(Qty),R:SUM(QtyPrc) (UPType:’Bev’ (JS)))

by dropping attribute T Year from the intermediate projection since TMonth — T Year.

Definition 4 (Roll-up of NGPSJ expressions) We define on the set of all NGPSJ expressions on cube
C a partial ordering called roll-up, denoted by <, such that F/; < E; iff, by applying a sequence of
generalized projections and selections to IV ;, it is possible to obtain an NGPSJ expression equivalent to
E;. We will denote with F;BE; the least upper bound of E; and E; in the roll-up partial ordering .

In practice, £/; < F; holds when every measure returned in £/; can be calculated from those returned in
I/;. In evaluating roll-up relationships, three factors must be taken into account: aggregation patterns,
selections on both dimension attributes and measures, and the aggregation operators applied to measures.
For instance, expression

TPType, TYear,SUM(Q) (UQ>2000 (ﬂ-PName,Tl\/Ionth,Q:SU M(Qty) (UPCategory:‘Foodstuffs’/\TYear> ‘1997 (J S))))

can be obtained from

R: UQ>1000(TPName,TMonth,Q:suM(Qty)(JS))

by computing
TPType, TYear,SUM(Q) (UPCategory:‘Foodstuffs’/\TYear> ‘1997’ AQ>2000 (R)) .

2.4 Aggregate Operators

An aggregate operator is a function mapping a multiset of values into a single value. An attempt to define
rules for aggregation of measures is presented in [37] and [51]: measures are classified into flow, stock
and value-per-unit, and a table defines when each class of measures can be aggregated depending on the
operators used and on the type of hierarchy (temporal, non-temporal). A classification of aggregation
functions which is relevant to our approach is presented in [26]:

e Distributive, that allows aggregates to be computed directly from partial aggregates.

e Algebraic, that require additional information (support measures) to calculate aggregates from
partial aggregates.

e Holistic, that do not allow aggregates to be computed from partial aggregates through a finite
number of support measures.

Other works demonstrating the importance of aggregation operators are [47], which studies the problem
of determining if a conjunction of aggregation constraints is feasible, and [7], which presents a theoretical
framework for studying aggregations from a declarative and operational point of view.

2.5 NGPS]J Views

View materialization consists in selecting, among all the possible views, those that optimize the response
to the workload under both a disk space and a maintenance cost constraint; this can be formulated as a
knapsack problem, and is obviously NP-hard. Most methods in the literature aim at determining the sub-
set of views that could be useful with reference to the workload (candidate views), then adopt heuristic
algorithms to find sub-optimal solutions [28, 30]. In [3], this is done with reference to distributive aggre-
gate functions; neither derived/support measures nor nesting of GPSJ queries are considered. Within this
paper we focus on determining candidate views defined by NGPSJ expressions; the exponential dimen-
sion of the space of the possible views makes this step more complex and crucial than that of selecting
the candidate views to be materialized.

'We conjecture that two NGPSJ expressions are equivalent iff their normal forms are equal (except for equivalent rewritings
of aggregation operators); this implies that the least upper bound of two expressions is unique

TiPName,MAX(Q1),(CQ1>1000(TtPName,SName,@1=suM(Q).(V12)))
| WAVG(P1.CT) P1=WAVG(P,C),C1=SUM(C)

/ 0O,

TIPType, TMonth,AVG(Prc), (O PCategory="Foodstufts'(V)
SUM(Qty-Prc)

TiPName, MAX(Q)(GQ>1000(TtPName, SName,@=sum(aty),(Vo)
WAVG(P,C) P=AVG(Prc),C=COUNT(*)

TIPName,SName, TMonth,Q=SUM(Qty),P=AVG(Prc),(V0)
C=COUNT(*),R =SUM(Qty-Prc)

Figure 1: QVG for queries (1 and ()5 (itis Vi : JS5)

Definition 5 (Candidate view) Given a cube C and a workload W = {Q1,...Q,,} on C, a candidate
view is defined by an NGPSJ expression V' on C such that:

Qi e WV =0Qi) VvV ([EQi,Q; e W[V =Qid(y)

In [4] the authors prove that candidate views defined as above are the only relevant views for ma-
terialization, i.e., that materializing non-candidate views may never decrease the workload cost. In our
approach, candidate views may:

e contain a subset of the tuples at a given pattern as a consequence of selections on dimension
attributes and measures;

e contain only a subset of the measures in the base cube as a result of projections;
¢ include measures obtained by applying different aggregation sequences to the same measure;

o include derived measures and support measures necessary to support queries based on algebraic
operators.

The widened definition of views given in our approach may lead to proliferation of measures; very large
tables may entail poor performance. In order to avoid this, it may be convenient to adopt vertical par-
titioning techniques capable of splitting views into smaller fragments aimed at optimizing performance
for a given workload [18].

The candidate views and the roll-up relationships between them can be represented in a graph:

Definition 6 (Query View Graph) The query view graph (QVG) for workload W is the directed acyclic
graph G = (VS| AS) such that:

o VS = {Vy,...V,}, where Vy is the NGPSJ expression defining the base cube and V1, ...V, are
those defining the candidate views.

o Arc A;; € AS denotes that V; < V;. Only the elemental roll-up relationships are represented in
AS; those which can be obtained by transitivity are omitted.

The QVG for a given workload is necessarily unique, since the set of candidate views is univocally
determined by the set of queries. Figure 1 represents the QVG for queries () ; and ()5 in Section 2.1; to
help the reader, also the expressions which allow one view to be computed from another are shown (in
dashed call-outs).

V chrr V chrr
4ON%

curr

chrr V Vt
Case A Case B Case C Case D

Figure 2: Different relationships between couples of views

2.6 Building the Query View Graph

The QVG for cube C and workload W = {Q1,...Q,,} is built incrementally by merging each query
with the QVG according to the expression which defines it:

QV G Builder (W, Vy):
{ VS ={W0}
AS = {(Vo, Q1)};
QVGE = (VS AS);
foreach), ¢ W,+ > 1do
{ S={V; e VS| Child(V;) = 0};
/1S set of the leaves in QV (7,
// function C'hild(V;) returns {V; € V.S'| (V;, Vi) € AS}
ViSu ={Qi}
Merge(S,Q;, NULL);

Merging rules are aimed at determining if and how a query can be answered on a view belonging to the
QVG. In general, the four possible relationships between two candidate views V' and V., as entailed
by Definition 4 are presented in Figure 2. In case A, V and V.. are equivalent; in cases B and C, one
of the views is less than the other. In case D no roll-up relationship can be established, and V', is defined
as VoVeurr.

The problem of comparing two NGPSJ expressions is discussed in [19]. The procedure proposed
can be seen as an iteration of the comparison between two GPSJ expressions, which was reported in
[27]. Comparison proceeds from inside the two nested expressions, considering at each step two units
having the form 7 (o (R)); while in [27] R denotes a set of joins, here it denotes the result of the NGPSJ
expressions analyzed up to the previous step.

The Merge algorithm finds the correct position for inserting V' in the QVG, starting from its leaves
and descending towards its root V. If V is already present (case A), no additional views must be
inserted and Merge terminates. Otherwise, if while descending a path a roll-up relationship (case B)
with V' is found, the correct insertion position on that path has been reached; if a D relationship (roll-
up relationship) among V' and some view V., is found, the path is abandoned and V., is inserted
into a set Drel to be further examined. At the end, for each view V; in Drel, a new candidate view
Vi = V;@V is determined and recursively merged into the QVG. The ExploreSubGraph function carries
out a depth-first exploration of the sub-graph including all the predecessors of V ...

In Figure 3, the steps of the QVGBuilder algorithm for the queries proposed in Section 2.1 are shown.
View V13 does not appear in the final QVG since it is equivalent to V15 (case A). As to V3, the search is
restricted to arc (@2, V12) since a roll-up relationship (case B) is found and the other can be inferred.

If we restrict to considering only the aggregation patterns, the QVG resulting from the algorithm
degenerates to the MDred Lattice presented in [4]. With reference to that approach, ours has a lower
computation complexity (in terms of comparisons between expressions) since the roll-up relationships

\ \
l’T[PType,TMonth,SUM(R),(GPCategory:'Foodstuffs'(V12)) | I'TETYear,PName, (TTmonth,PName,@1=sUM(Q).(OPType=Bev(V13))) |
| WAVG(F.C) | | AVG(R1).SUMQ1) R1=SUMR) [

J

TIPName,SName, TMonth,Q=SUM(Qty),P=AVG(Prc),(Vo)
C=COUNT(*),R =SUM(Qty-Prc)

N\
{ TlPName,MAX(Q1),(G Q1>1000(TtPName,SName,@1=sum(@),(V12))) !

| WAVGP1.CY) P1=WAVG(P,C).C1=SUM(C)
——
- - - - - " ~ '/_ ____________________ \l
| 7 rvear pName, (GPType=Bov(V2s) | | TTPType, TMonth8UM(R),(OPCategory="Foodstufts'('23)) |
L avomsome) _waeeo J

TlPName, TMonth,Q=SUM(Qty),P=AVG(Prc),(1 0)
C=COUNT(*),R =SUM(Qty-Prc)

N

| TtPName, TMonth,SUM(@Q),WAVG(P,C).(V12) \I
SUM(C),SUMR) J

Figure 3: Construction of the QVG for queries () 1, ()2, (3

10

——QVG ——LAT

300

N
(&)
o

200
150

100

thousands of pages

g
o
<
~
~
<
~

0
08 09 10 11 12 13 14 15
GB

Figure 4: Execution costs for the QVG-based and the lattice-based approaches, on a sample workload,
in function of the global space constraint. Besides each value point, the number of views materialized

expressed by the QVG are actively used to restrict the search to the sub-graph where the new vertex can
be inserted. In fact, the complexity of Merge for adding the (i + 1)-th query to the QVG reaches O(2°)
only in the worst case, in which (1) the QVG already contains 2% views and (2) all the candidate views
solving both) ;11 and each element in the power set of the ¢ queries in the QVG must be created, i.e.,
relationship D holds for all the views in the QVG. In the best case the QVG degenerates into a path, and
the complexity drops to O(1). In the other cases, the complexity depends on the specific characteristics
of the queries and on the order in which they are merged. The algorithm is efficient since the search
space is pruned by neglecting all the vertices for which a roll-up relationship with the new vertex to be
positioned can be inferred from the graph structure.

2.7 Experimental Tests

We tested our approach on the TPC-D benchmark; the workload includes four standard TPC-D queries
and three additional NGPSJ queries. In order to demonstrate the effectiveness of our approach, we
compared the results obtained by applying the same materialization heuristics [4] to our QVG and to the
lattice defined in [4] (considering the same global space constraint). The cost function adopted expresses
the total number of disk pages which must be accessed in order to solve each query, taking both the view
size and the query selectivity into account. The results are summarized in Figure 4.

The low execution cost for the QVG-based approach is mainly due to the fact that, since NGPSJ
views can express the nesting of aggregation operators, queries can be executed on views aggregated at a
“higher” pattern. Besides, since NGPSJ views are more closely tailored on queries than classical views,
more NGPSJ views typically fit the same space constraint. These considerations are further supported
by observing how, in Figure 4, materializing the maximum number of useful NGPSJ views (7, one for
each query in the workload) requires only 1.1 GB, and entails a lower cost than materializing the same
number of classical views.

3 Cardinality Estimate

In this section, our approach to estimating the cardinality of views is described. After outlining our
approach to estimation and showing its benefits with an example, we introduce the basic properties of
bounds, propose an efficient bounding strategy, and sketch a branch-and-bound approach to determine
the upper bound of a given view.

11

dimensional

scheme
logical

scheme

view
materializer ,

T

workload

—’ bounder
dimensional

scheme, bounds
cardinality

constraints
—} estimator

L ?andidate view

cardinality
estimate

Figure 5: Overall architecture for logical design

3.1 Approach Overview and Motivating Example

The framework for this work is the logical design of data marts carried out off-line, i.e., assuming that
the source data cannot be directly queried to estimate the cardinality of views. As sketched in Figure
5, whenever the materialization algorithm requires information about a candidate view V', our approach
works in two steps. First, the bounder uses the set 7 of cardinality constraints supplied by the user
to determine effective bounds for the cardinalities of a proper set of views; then, the estimator uses
these bounds to derive a probabilistic estimate for the cardinality of V. Note that this two-steps approach
generalizes well-known parametric models for the estimation of the cardinality of relational queries [40],
and in particular those for projection size estimation [10], for which bounds are typically given as input
parameters. Relevant examples of cardinality constraints that may be considered are the cardinality w of
a view W, a lower and/or an upper bound (w~ and w™, respectively) to the cardinality of ¥/, and the
ratio between the cardinalities of two views W and Ws.

The set Z, together with cube C, univocally determines two bounds for the cardinality of V', which
are called the greatest lower bound and the least upper bound, denoted as v ~ and v, respectively.> The
interpretation of such bounds is as follows: (1) in each instance / of that does not violate any constraint
in Z, the cardinality v of V' is such that v € [v~, vT]; and (2) there exist two instances, both compatible
with Z, where v equals v~ and v, respectively.

Computing the bounds implied by 7 turns out to be a challenging combinatorial problem, even for
“simple” forms of cardinality constraints. For instance, it is known that the problem is NP-hard for
arbitrary patterns of functional dependencies [9]. Furthermore, the actual computational effort needed to
compute these bounds might limit applicability in real-world cases. For this reason, the bounder is built
around the concept of bounding strategy. A bounding strategy s is characterized by a couple of bounding
functions that, given Z,C, and V, compute bounds v and v such that v, < v~ and v™ < v both
hold. In other terms, a bounding strategy never computes bounds which are more restrictive than the
ones logically implied by the input constraints, trading-off accuracy for speed of evaluation. We say that
a strategy s is decoupled iff computing v for an arbitrary view V only requires the knowledge of upper
bounds w of other views ¥, but no knowledge of lower bounds w ", and vice versa.

Turning to the estimator, our framework may support different probabilistic models. A probabilistic
model is a function m that, given Z,C, V, as well as bounds computed by the bounder, provides an
estimate for the cardinality of V. In general, this step can use information from 7 that is not suitable to
derive bounds. Typically this is the case where a cardinality constraint represents an average value (e.g.,
the number of calls originating on the average from a given number on each day is 10).

It is now necessary to report some considerations about the class of views we consider. The cardi-

?For simplicity of notation, we omit the dependence of bounds on C and Z.

12

nality vy of an NGPSJ view

Vit opream, (7P, My (- OPreanty (TP, My (OPredAnPredds (1)))...))

is determined by three factors: its outer pattern Py, the selection PredA it operates on dimension at-
tributes, and the selections PredMy, ... Pred My it operates on measures at the different aggregation
steps. Now, let V3 @ wp, g, (), where My is the set of measures in the base cube, and let v, be its car-
dinality. While of course in general it will be v1 < v3 due to selection predicates, from the point of view
of upper bounds we may assume that v;” < vj . In fact, for any predicate PredM on measures we may
write, there always exists an instance of the cube for which PredM is true for all tuples. Similarly for
the predicates on attributes. For this reason, in computing upper bounds we will consider only “simple”
views including no selection predicates; thus, each view will be characterized only by its aggregation
pattern. The Definitions of view and roll-up are then reformulated as follows:

Definition 7 (View) Given a cube C, a view on C is a pattern P on C.

Like for NGPSJ expressions, given two views V and W, both their sup and inf views always exist
according to the roll-up partial ordering on patterns introduced in Definition 2; we will denote the sup
with V& W . Thus, roll-up determines a lattice, which we will call multidimensional lattice for C, whose
top and bottom elements are dim (C) and the empty view (), respectively.

Example 2 A Calls cube modeling the phone calls supported by a telecommunication company might
include:

U = {date, week, month, year, sourceNumber, sourceDistrict, sourceState, destNumber,
destDistrict, destState, timeSegment }

F = {date — week, date — month, month — year, sourceNumber — sourceDistrict,
sourceDistrict — sourceState, destNumber — destDistrict, destDistrict — destState }

thus having dim(C) = {date, sourceNumber, destNumber, timeSegment} as dimensions. Examples of
views on the Calls cube are V' = {month, sourceNumber, destState}, W = {month, sourceState} and
7 = {year, sourceDistrict}. It is W& 2 = {month, sourceDistrict}. The roll-up relationships between
these views are the following: W<W &7, Z<WaZ, and WHZ <V <dim(C). o

Suppose that the telecommunication company domain serves 107 telephone numbers during a 10>
days period on 5 daily time segments, and let V' = {sourceNumber, destNumber, timeSegment}. Using
a simple bounding strategy, it is derived that v > 107, since at least one call is made from each number,
and v < 5 x 10, since at most each number calls each other number on each time segment. If the
cardinality of the base cube is known, for instance it is 101!, a bounding strategy could improve the
upper bound of V' to 10!, since the cardinality of any aggregate view cannot exceed that of the base
cube. Suppose now that the expert of the application domain is capable of providing an additional
information: the number of distinct source-destination couples is at most 10 . From this, we can infer
that v < 5 x 10°.

3.2 A Decoupled Upper Bounding Strategy

In this subsection we focus on issues related to computing upper bounds by means of a decoupled bound-

ing strategy and assuming that the set Z just consists of a set of view cardinalities. In particular, for each

A; € U we assume that card(A;) = a; € Z. This assumption, which is perfectly reasonable in all appli-
cation domains, is necessary in order to guarantee that at least one upper/lower bound can be determined
for each view. In addition, Z may also include the cardinality w ; of some other view W;. We say that a
view is ground iff its cardinality is in Z.

13

The basic observation underlying the determination of effective bounds for view cardinalities is that
the multidimensional lattice induces an isomorphic structure over such cardinalities. Let I be an instance
of C, and let v stand for the cardinality of view V' in I. From Definition 2 it follows that V <W implies
v < w VI, since W — V holds. This inequality also applies to upper bounds.

Lemma 1l IfV<W, thenvt < wt.

Proof: From Definition 2 it follows that V<W implies v < w in each instance of C, since W — V
holds. Now, assume that vt < w*. Then, there is an instance of C in which v < vt < w < wT, thus
v < w, which is a contradiction. |

The strategy we present strongly relies on the concept of cover of a view. Let P be the set of all
subsets of the views in cube C.

Definition 8 (Cover) Let V be a view on C and S = {Wy,... Wy, } € P¢ be a set of views. S is called
a V-cover iff V<& (5). A V-cover is said to be ground when all the views it includes are ground.

Example 3 In the Calls cube, let V' = {sourceDistrict, destDistrict, timeSegment, month} and 7 =
{ﬂ)o7 wy, W, W3, Wy, w5} where

Wy = {sourceNumber, destNumber, timeSegment, date}
W1 = {sourceNumber, destDistrict, timeSegment, date }
W, = {sourceState, destDistrict, timeSegment }

W5 = {timeSegment, month}

W, = {sourceDistrict, destDistrict, date }

W5 = {sourceNumber, date}

Some examples of ground V' -covers are

St ={Wi}

52 = {W27W4}
53 = {W37W4}
Sy = {Wy, Ws};

in fact, it is

V<a(S1) = &(51) =Wy
V<&(S2) = $(S53) = {sourceDistrict, destDistrict, date, timeSegment }

In Figure 6 the roll-up relationships between these views are depicted. ad
The notion of cover leads to generalize Lemma 1 to the case where several views at a time are used

to bound from above the cardinality of V. Intuitively, this corresponds to viewing the problem as the one
of determining the upper bound of the size of the (natural) join of the views in 5.

Lemma 2 Let V be a view and S = {Wy,...W,,} be a V-cover. Then: v < u(S) def [T, w;"

Proof: Immediate, since the least upper bound of a set of views corresponds to their natural join, and
the size of the natural join of a set of views can never exceed that of their Cartesian product. O

14

W
Ws Wy ® Wy = W@ W,
1% Wy
W, W

Figure 6: Roll-up relationships between views in Example 3

Coherently with Lemma 2, the cover-based strategy cb computes upper bounds as:

I ifvecd,
=) min{uey(5) | S € Pe, V=a(5)} ifv ¢ C.
where ucp () = TT7L; w).

Even for cubes with only a few attributes, computing vj) by directly using this equation is not prac-
tically feasible, since the size of Pc is O(QQN), where NV is the number of attributes in C. Fortunately,
we can limit ourselves to consider only a restricted set of V' -covers, which are called minimal V -covers
and provide useful, non redundant, bounds. To see how minimal V'-covers are determined, we need to
consider two orthogonal aspects: a domination relationship between sets of views and the input informa-
tion, Z. While the former induces a partial order on the bounds obtainable from V -covers, regardless of
the specific input Z, the latter can be used to restrict the set of useful V"-covers to only those consisting
of ground views.

Definition 9 (Domination) Ler S| and S, be two sets of views. We say that S; dominates .S, written
S1E5, iff uch (S1) < uch(S2) for every possible input set T.

Lemma3 Let Sy = {Wi1,... Wi Wintand So = {Waq,..., Wy, ... , Wy} be two sets

of views. If Sy can be partitioned into m subsets S 1, . .., Sam, suchthat Wy ;<& (S2;) Vi=1,...,m,
then S1C.S5.
Proof: Immediate from Lemma 2 and from Definition 9. a

For instance, in Example 3 it is 571 CS4, since W;<&(54). Note that if S;C.S; then &(5;)<$H(S;)
necessarily holds, whereas the opposite is not true in general (e.g., S5 .94 though (53) <E(S4)).

Lemma 4 Let S be a non-ground V -cover. Then there exists a ground V -cover Sy such that uc,(S1) <
ueh (9).

Proof (sketch): Since S is not ground, at least one view in .S is not ground. By recursively applying
Lemma 2, ucp (S) will be eventually expressed as a product of bounds in Z. The case of strict inequality
(uch(S1) < uch(9)) can arise since in this recursive process there is no guarantee that a given ground
view will be generated just once, thus its least upper bound might appear more than once in u ¢, (5). O

Definition 10 (Minimal Cover) A ground V -cover S is minimal iff there is no other ground V -cover
S1 such that S1C.S holds.

The following theorem immediately derives from Definition 9 and Lemma 4.
Theorem 1 (Sufficiency of Minimal Covers) It is:

min{ue (S) | S isa V-cover} = min{ucp(9) | S is a minimal V-cover}.

15

WZ' WO W1 W2 W3 W4 W5
w; || 10| 10" 10° 1.8 x 10? 10* 6 x 10°
v || 10T] 10 [9.36 x 10° | 9.36 x 10° | 1.8 x 10° | 1.8 x 10°

Table 1: Improving upper bounds of v for increasing domain-derived information

Example 4 With reference to Example 3, S1, Sz, Ss, and S5 = {Wy, {sourceDistrict}, {month}} are
minimal V' -covers. o

Although Theorem 1 states that v; can be determined by considering only minimal V' -covers, Defi-
nition 9 does not directly provide a constructive rule to generate them. Nevertheless, based on the results
obtained so far, it is possible to derive some rules aimed at reducing significantly the cardinality of the
superset of minimal V -covers to be generated:

1. A ground view W such that V <W is a ground V -cover (from Definition 8).

2. A ground view W such that arity(W) = 1 and W NV = () does not belong to any minimal
V-cover® (from Definitions 9 and 10).

3. A ground view W such that arity(W) > 1 and YW’ for which W/<W itis arity(W' NV) < 2
does not belong to any minimal V -cover (since C includes the cardinalities of all the attributes).

4. If S is a ground V' -cover, no set .S’ such that S C S’ is a minimal V' -cover (from Definition 9).

5. If a minimal V-cover S contains a ground view W, it cannot contain any other ground view W'
such that W<W' (from Definitions 9 and 10).

We approach the problem of computing the upper bound for a view V' given a set of constraints 7
using a branch-and-bound algorithm which generates a superset of the minimal V' -covers by solving a set
of subproblems that repeatedly add new views to the partial solution obtained so far. Each subproblem is
associated to: (1) a partial solution S containing all the ground views selected so far to build a ground V' -
cover; (2) an ordered set 7' = {WW;} of the possible ground views to be added to S and compatible with
S with reference to the rules above; (3) a function /b(.5) which returns a lower bound of the cardinality
of the ground V -covers that can be obtained by extending .S. The order on 7 is obtained by considering
first the ground views for which the intersection with V' has higher arity. It is remarkable that, if we
impose that a partial solution containing a ground view W ; can be extended only with ground views W ;
such that j > ¢, inducing a total order on 7" avoids the same cover to be generated twice; furthermore,
the chosen order determines an heuristic criterion for generating the “most promising” covers first.

Example 5 We are interested in estimating V' = {sourceDistrict, destDistrict, timeSegment, month}
in the Calls cube. Table 1 shows how the upper bound of v improves as additional cardinality constraints
are supplied as input (see Example 3). The result when all six views are included in 7 (besides the
cardinality of the views with arity 1) is obtained by building only 6 complete ground V-covers. Seven
partial solutions are abandoned since dominated by the current best solution. a

4 Populating the DW

Population and refreshing of cubes are critical issues in DW initialization and management. Periodically,
a number of batch queries are executed on the reconciled operational database. Note that these queries are
typically very different from OLAP queries. Indeed, while the latter queries are executed on star schemes

arity(W) denotes the number of attributes in W,

16

(or similar simple schemes), these populating queries usually span several tables in the reconciled scheme
in order to update both dimension and fact tables. Thus, they are very often long queries involving many
join operations, plus selections, projections and, possibly, grouping and aggregate operators. In this
context, the choice of a good query-execution strategy is therefore particularly relevant, because the
differences among execution times can be several orders of magnitude large.

Query optimizers based on quantitative methods examine a number of alternative plans for answering
a given query and then choose the best one, according to some cost model. These planners exploit
information on the data, e.g., sizes of relations, indices, and so on. Recall that computing an optimal
plan is an NP-hard problem and hence it is unlikely to find an efficient algorithm for selecting the best
plans. Indeed, all the commercial DBMS just compute approximations of optimal query plans. See [50]
for a short survey of quantitative methods and for further references.

A completely different approach to query answering is based on the identification of some structural
properties of queries, rather than on quantitative information about data values. Exploiting such proper-
ties is possible to answer large classes of queries efficiently, i.e., with a polynomial-time upper bound.
One of the most important and best studied class of tractable queries is the class of acyclic queries
[6, 8, 12, 14, 15, 20, 36, 39, 43, 48, 49, 60, 61]. It was shown that acyclic queries coincide with the tree
queries [5], see also [1, 38, 55]. The latter are queries which are representable by a join tree (or join
forest) (see [50] for a formal definition).

By well-known results of Yannakakis [60], acyclic conjunctive queries are efficiently solvable. More
precisely, all answers of an acyclic conjunctive query can be computed in time polynomial in the com-
bined size of the input and the output. This is the best possible result, because in general the size of
the answer may be exponentially greater than the size of the input. Recall that, for cyclic queries, even
computing small outputs, e.g. just one tuple, or checking whether the answer of a query is non-empty
(Boolean queries) requires exponential time (unless P = NP). The good results about acyclic conjunctive
queries extend to very relevant classes of nearly acyclic queries, such as queries whose associated primal
graph has bounded treewidth [44], a cutset [13] of bounded size, or a bounded degree of cyclicity [31].
Thus, a number of query answering techniques based on such structural properties have been proposed.
Conceptually, all of them may be viewed as composed of two phases:

1. transform the given query into an equivalent acyclic query, and
2. solve this acyclic query.

We call these techniques decomposition methods, because they solve queries by decomposing them into
acyclic ones.

It is worthwhile noting that quantitative and decomposition methods have been completely separated
worlds. In particular, structural properties of queries have been deeply investigated in the literature,
but most commercial DBMS only use quantitative methods for optimizing queries. However, many
meaningful queries in our framework are quite long, but often acyclic or close to acyclic queries. Because
of their sizes, it may happen that quantitative methods are unable to find optimal query plans and then
take a large amount of time for answering queries that are structurally simple and easily solvable.

In the following sections we propose new techniques for answering queries efficiently by using the
notion of hypertree decomposition [22]. It has been shown that the class of queries having bounded
hypertree-width has the same desirable properties as the class of acyclic queries, and that this is the
largest class of queries having these features (among the known methods described in both the Al and
the database literatures) [16]. In particular, we first describe a pure decomposition method just based on
the structure of the query, and then we show how to extend this technique in order to exploit quantitative
information on relations, attribute selectivity, and so on.

For the sake of presentation, our description will focus on conjunctive queries, which are equivalent
to SELECT-PROJECT-JOIN queries. However, our methods can be easily extended to more general
queries, possibly involving aggregate operators.

17

4.1 Hypertree Decompositions and Tractable Queries

We next recall some basic definitions of queries, hypergraphs, and hypertree decompositions. For de-
tailed descriptions of the latter notion, see [22, 25].

We will adopt the standard convention [1, 55] of identifying a relational database instance with a
logical theory consisting of ground facts. Thus, a tuple (a1,...ax), belonging to relation r, will be

identified with the ground atom (a1, ... ,ax). The fact that a tuple (a1, ... , a;) belongs to relation r
of a database instance DB is thus simply denoted by (a1, ... ,a;) € DB.

A (rule-based) conjunctive query) on a database schema DS = {R,..., R,,} consists of a rule
of the form

Q: ans(u) < ri(ug) A---Arg(up),

where n > 0; rq,...r, are relation names (not necessarily distinct) of).S; ans is a relation name not
in DS; and u,uy, ..., uy, are lists of terms (i.e., variables or constants) of appropriate length. If u is
an empty list, i.e., no variable occurs in the head, then () is said a Boolean query. The set of variables
occurring in) is denoted by var(Q)). The set of atoms contained in the body of @) is referred to as
atoms(Q)).

The answer of a non Boolean query ¢ on a database instance DB with associated universe U, denoted
by Q(DB), consists of a relation ans whose arity is equal to the length of u, defined as follows. Relation
ans contains all tuples ué such that 6 : var(()) — U is a substitution replacing each variable in
var(Q) by a value of U and such that for 1 < ¢ < n, r;(u;)# € DB. (For an atom A, A6 denotes the
atom obtained from A by uniformly substituting §(X') for each variable X occurring in A.) If Q) is a
Boolean query, then ans is a ground predicate and the answer ()(DB) is “true” if there is at least one
such a substitution ¢ satisfying the body of (), otherwise) (DB) is “false.”

If () is a conjunctive query, we define the hypergraph H (Q) = (V, F) associated to () as follows.
The set of vertices V' consists of all variables occurring in). For each atom r;(u;) in the body of @),
the set IV contains a hyperedge consisting of all variables occurring in u ;. Note that the cardinality of F
can be smaller than the cardinality of atoms(Q) because two query atoms having exactly the same set of
variables in their arguments give rise to only one edge in £'. For example, the three query atoms (X, V),
r(Y, X),and s(X, X, Y) all correspond to a unique hyperedge { X, Y }.

Acyclic conjunctive queries were the object of a large number of investigations [6, 12, 14, 15, 20,
39, 43, 48, 49, 60]. In particular, it was shown that the class of acyclic queries coincides with the class
of tree queries ([5], see also [1, 38, 55]). The latter are queries which are representable by a join tree (or
join forest).

A query @ is acyclic if and only if its hypergraph H (Q)) is acyclic or, equivalently, if ¢) has a join
forest.

A join forest for a query @) is a forest G whose set of vertices V' is the set atoms(()) and such that,
for each pair of atoms 4; and A, in Vz having variables in common, the following conditions hold:

1. A; and A, belong to the same connected component of &, and
2. all variables common to A; and A5 occur in every atom on the (unique) path in G from A to As.

If GG is a tree, then it is called a join tree for ().
Acyclic queries have highly desirable computational properties:

1. Acyclic instances can be efficiently solved. Yannakakis provided a (sequential) polynomial time
algorithm for answering acyclic queries4 [60].

2. We have recently shown that answering queries is highly parallelizable on acyclic queries, as this
problem (actually, the decision problem of answering Boolean queries) is complete for the low
complexity class LOGCFL [21, 24]. Efficient parallel algorithms for Boolean and non-Boolean

“Note that, since both the database DB and the query @ are part of an input-instance, what we are considering is the
combined complexity of the query [56].

18

queries have been proposed in [21, 24] and [23]. They run on parallel database machines that
exploit the inter-operation parallelism [58], i.e., machines that execute different relational opera-
tions in parallel. These algorithms can be also employed for solving acyclic queries efficiently in
a distributed environment.

3. Acyclicity is efficiently recognizable.

4. The result of a (non-Boolean) acyclic conjunctive query () can be computed in time polynomial in
the combined size of the input instance and of the output relation [60].

Intuitively, the efficient behavior of acyclic instances is due to the fact that they can be evaluated by
processing any of their join trees bottom-up by performing upward semijoins, thus keeping small the size
of the intermediate relations (which could become exponential if regular join were performed).

A new class of tractable conjunctive database queries, which generalizes the class of acyclic queries,
has recently been identified [22]. This is the class of queries having a bounded-width hypertree decom-
position [22]. These queries have all the properties described above for acyclic queries [22].

A hypertree for a hypergraph H is a triple (T, x, A), where T" = (N, E)) is a rooted tree, and y
and A are labelling functions which associate to each vertex p € N two sets x(p) C var(H) and
Ap) C edges(H). If T" = (N', E') is a subtree of T', we define x(1") = |J,cp+ x(v). We denote the
set of vertices N of T' by vertices(1'), and the root of 1" by root(1’). Moreover, for any p € N, T,
denotes the subtree of 7" rooted at p.

Definition 11 (Hypertree decomposition) A hypertree decomposition of a hypergraph H is a hypertree
HD = (T, x, A) for H which satisfies all the following conditions:

1. for each edge h € edges(H), there exists p € vertices(1') such that b C y(p) (we say that p
covers h);

2. for each variable Y € var(#H), the set {p € vertices(1') | Y € x(p)} induces a (connected)
subtree of T;

3. foreach p € vertices(T), x(p) C var(A(p));
4. for each p € vertices(T'), var(A(p)) N x(L,) € x(p).

Note that the inclusion in Condition 4 is actually an equality, because Condition 3 implies the reverse
inclusion.

Anedge h € edges(H) is strongly covered in HD if there exists p € vertices(1') such that var(h) C
x(p) and h € A(p). In this case, we say that p strongly covers h.

A hypertree decomposition HD of hypergraph H is a complete decomposition of H if every edge of
‘H is strongly covered in HD.

The width of a hypertree decomposition (T, X, A) is Mm% peyertices(T)|A(P)|- The HYPERTREE width
hw(H) of H is the minimum width over all its hypertree decompositions. A c-width hypertree decom-
position of # is optimal if ¢ = hw(H).

The acyclic hypergraphs are precisely those hypergraphs having hypertree width one. Indeed, any
join tree of an acyclic hypergraph # trivially corresponds to a hypertree decomposition of H of width
one. Furthermore, if a hypergraph 7’ has a hypertree decomposition of width one, then, from this
decomposition, we can easily compute a join tree of 7', which is therefore acyclic [22].

Remark 1 From any hypertree decomposition HD of /, we can easily compute a complete hypertree
decomposition of A having the same width. For any “missing” edge h, choose a vertex ¢ of T’ such that
var(h) C x(g) (such a vertex must exist by Condition 1), and create a new vertex p as a child of ¢ with
A(p) = h and x(p) = var(h). Assuming the use of suitable data structures, this computation can be
done in O(||#|| - ||HD]||) time, where || HD || denotes the size of a hypertree decomposition, i.e., the

19

number of bits needed for encoding HD (that is, for encoding the rooted tree of HD and, for each vertex
v of this tree, the labellings y and A for v, encoded as a list of variables and a list of edge identifiers,
respectively).

Intuitively, if 4 is a cyclic hypergraph, the x labelling selects the set of variables to be fixed in order
to split the cycles and achieve acyclicity; A(p) “covers” the variables of y(p) by a set of edges.

Example 6 Consider the following conjunctive query ¢J 1:

ans «— j(J, X, Y, X", Y')ANa(S, X, X", C, FYNB(S, Y, Y C' I);
c(C.C"YNAX, Z)Ne(Y, Z)N f(F,F', ZYNg(X', Z') NW(Y', Z7).

Let 7, be its corresponding hypergraph. Since H is cyclic, hw(#H;1) > 1 holds. Figure 7 shows a
(complete) hypertree decomposition HD 1 of #; having width 2, hence hw(H1) = 2.

{1,X, v, X" Y'} {5}

X, X, v,y 5¢CcC FF'} {ab}

{X,v,¢,¢",2} {jc} XY, FF, 2} {jf}

{x,2'} {g}| {Y' 2} {n}

x,2) 1)) g e

Figure 7: A 2-width hypertree decomposition of # ;

i X Y, XY

a(S, X, X', C,F), b(S8,Y,Y' C' F')

j(_, XY, —)7 C(CVCIVZ) j(-v - -VXIVYI)V f(F, FIVZI)

‘ d(X, 7) ‘ ‘ e(Y,Z) ‘ g(X’, 7" nY' 2"

Figure 8: Hyperedge representation of hypertree decomposition HD ¢

In order to help the intuition of what a hypertree decomposition is, we also present an alternative
representation, called hyperedge representation. (Also, “atom representation.”) Figure 8 shows the
hyperedge representation of the hypertree decomposition /1D of 7. Each node p in the tree is labeled
by a set of hyperedges representing A(p); x(p) is the set of all variables, distinct from * °, appearing in
these hyperedges. Thus, the anonymous variable ‘ _’ replaces the variables in var(A(p)) — x(p).

Using this representation, we can easily observe an important feature of hypertree decompositions.
Once an hyperedge has been covered by some vertex of the decomposition tree, any subset of its variables
can be used freely in order to decompose the remaining cycles in the hypergraph. For instance, the
variables in the hyperedge corresponding to atom j in 4 are jointly included only in the root of the
decomposition. If we were forced to take all the variables in every vertex where j occurs, it would not

20

be possible to find a decomposition of width 2. Indeed, in this case, any choice of two hyperedges per
vertex yields a hypertree which violates the connectedness condition for variables (i.e., Condition 2 of
Definition 11).

Let k£ be a fixed positive integer. We say that a CQ instance [has k-bounded HYPERTREE width if
hw(Hy) < k, where H; is the hypergraph associated to /. From the results in [22], it follows that
k-bounded hypertree width is efficiently decidable, and that a hypertree decomposition of width k& can
be efficiently computed (if any).

4.2 Efficient Query Evaluation

In this section, we show how to exploit hypertree decompositions for answering conjunctive queries
having bounded hypertree-width. In particular we show that, for any constant k, conjunctive queries
having hypertree width at most k£ can be efficiently answered, as they can be transformed, via a logspace
procedure, to an equivalent acyclic conjunctive query.

The following lemma shows that, starting from a hypertree decomposition of a query (), we can
efficiently build a join tree of an acyclic query)’ equivalent to ().

Lemma 5 Let () be a Boolean conjunctive query over a database DB, and HD a hypertree decomposi-
tion of () of width k. Then, there exists ()', DB’ JI' such that:

1. Q' is an acyclic (Boolean) conjunctive query evaluating to “true” on database DB’ iff the answer
of Q on DB is “true”.

2. |KQ", DB, JIY|| = O((||Q|| + ||HDY|) - r*), where r denotes the maximum relation-size over the
relations in DB.

3. JT is a join tree of the query @’

4. (Q', DB JT') is logspace computable from (), DB, HD).

Proof. Let () be a Boolean conjunctive query over a database DB, and HD a hypertree decomposition
of () of width k. Without loss of generality, we assume that ¢) does not contain any atom A such that
var(A) = 0. We first transform HD, into a k-width complete hypertree decomposition HD = (T', x, A)
of (. This transformation is feasible in logspace, and || HD|| = O(||Q|| + || HD||).

The query) evaluates to true on DB if and only if M 4¢c,s0,5(0) 7€l(A) is a non-empty relation,
where rel(A) denotes the relation of DB associated to the atom A, and X is the natural join operation
(with common variables acting as join attributes).

For each vertex p € vertices(T') define a Boolean query () (p) and a database DB (p) as follows. For
each atom A € A(p):

o Ifvar(A) C x(p), then A occurs in Q)(p) and rel(A) belongs to DB(p);
Z

o if var(A) € x(p) and (var(A4) N x(p)) # 0, then Q(p) contains a new atom A’ such that
var(A’) = var(A) N x(p), and DB(p) contains the corresponding relation rel(A’), which is
the projection of rel(A) on the set of attributes corresponding to the variables in var(A’);

Now, consider the following Boolean query () on the database DB = Upevertices(ry DB(p).-

Q: A QW

pEvertices(T)

By the associative and commutative properties of natural joins, and by the fact that HD is a complete
hypertree decomposition, it follows that ¢ on DB is equivalent to () on DB. To see this, note that DB just
contains some new relations which are projections of relations already occurring in DB, and () contains

21

the atoms corresponding to these relations. Thus, no tuple can be lost by taking the additional joins
corresponding to these relations. It follows that if () evaluates to true on DB, then also () evaluates to
true on DB. On the other hand, since HD is a complete decomposition, every atom A of () also occurs
in Q) (as A must occur in A(p) for some vertex p of T'). Thus, if () evaluates to true then also () evaluates
to true.

We build (Q',DB’, JT') as follows. JI' has exactly the same tree shape of 7. For each vertex p
of T, there is precisely one vertex p’ in JT', and one relation P’ in DB’. Then p’ is an atom having
X(p) as arguments and its corresponding relation P’ in DB’ is the natural join of all atoms in Q(p).
Q' = /\pE g7 P’ is the conjunction of all atoms corresponding to some vertex of J7'.

Q' on DB/ is clearly equivalent to () on DB, and hence to ¢ on DB. JT is a join tree of)/, because
the connectedness condition holds in the hypertree decomposition D and thus in JI', by construction.
Figure 9 shows the join tree JT; of the acyclic query @} corresponding to query) of our running
example.

Each relation in DB’ is the join of (at most) relations of DB, and its size is O(r*), where r denotes
the maximum relation-size over the relations in DB. Moreover, the number of relations in DB’ is equal to
the number of vertices of 7. Therefore, || DB'|| = O(||HD||-r*). Since ||JT|| = O(||HD||) and ||Q’|| =
O(|HDI|), we have |[(Q/, DB, JT)|| = O((||Q||+| [D]} -r*) (recall that || ED|| = O(||Q|| +] | ED]).
where the term ||Q)|| comes from the “completion” of the decomposition HD — see above).

The described transformation mainly involves a join of at most k relations for each node of the tree.
Since the join of a constant number of relations can be computed in logspace, the transformation is
feasible in logspace. |

n(J X, Y, X" Y')

p2(X, X", Y, Y, 5,C,C" F F')

T

pa(X,Y,C, 0", 7) pa(X" Y F F', Z")

ps(X,Z) pe(Y, Z) pr(X', Z") pa(Y', Z2")

Figure 9: Join tree .JT computed for query Q)

Answering conjunctive queries having bounded hypertree width has the same complexity as answer-
ing acyclic queries, as stated by the following theorem.

Theorem 2 ([22]) Given a database DB, a Boolean conjunctive query @), and a k-width hypertree-
decomposition of Q) for a fixed constant k > 0, deciding whether () evaluates to true on DB is LOGCFL-
complete.

Using the same construction as in the proof of Lemma 5 and well-known results on the sequential
complexity of acyclic conjunctive-query evaluation [60], we get the following result for non-Boolean
conjunctive queries.

Theorem 3 Given a database DB, a (non-Boolean) conjunctive query), and a k-width hypertree de-

composition of () for a fixed constant k > 0, the answer of () on DB can be computed in time polynomial
in the combined size of the input instance and of the output relation.

22

Remark. In this section we demonstrated that k-bounded hypertree-width queries are efficiently com-
putable, once a k-width hypertree decomposition of the query is given as (additional) input. In particular,
we have seen that the given decomposition in fact determines the query plan for executing the query. In
the following section, we face the problem of computing such a decomposition.

4.3 Computing a Hypertree Decomposition

Given a query () and a small-width hypertree decomposition HD for (7, we know that there is a polyno-
mial time upper bound for answering (2, while in general this problem is NP-hard and all the available
algorithms requires exponential time in the worst case. However, HD is not just a theoretical indication
of tractability for (J. Rather, after the construction in Lemma 5, HD represents a (partially specified)
query plan for (). Indeed, the decomposition suggests to proceed in two phases: first compute the join op-
erations among relations occurring together in some vertex of 71); then, compute just semi-joins among
the intermediate relations computed in the previous phase, following some topological ordering of the
vertices of HD, as in Yannakakis’s algorithm. Note that such a query plan is not completely specified.
For instance, no actual join method (merge, nested-loop, etc.) is chosen. However, this final step can
be easily implemented using well-known techniques that take into account indices, size of relations, and
so on. We remark that such optimizations are to be executed just on relations belonging to the same
vertex, and hence on k relations at most, for some fixed and usually very small & > 0. Thus, also optimal
methods based on dynamic programming or sophisticated heuristics can be employed, as the size of the
problem is small, by the choice of k.

Given a query (), we next focus on the problem of computing a hypertree decomposition of its
hypergraph H (()) having the smallest possible width.

First, we introduce a new normal form for hypertree decompositions, which is a bit stronger than the
normal form proposed in [22]. This stronger form allows us to develop a more efficient procedure for
computing optimal hypertree decomposition.

Let 7 be a hypergraph, and let V' C wvar(7) be a set of variables and X,Y € var(H). X is
[V']-adjacent to Y if there exists an edge h € edges(H) such that {X,Y} C (h — V). A [V]-path
7w from X to Y is a sequence X = Xg,...,X; = Y of variables such that: X; is [V]-adjacent to
Xit1, foreach @ € [0...0-1]. A set W C wvar(H) of variables is [V']-connected if V.X,Y € W there
is a [V']-path from X to Y. A [V J-component is a maximal [V]-connected non-empty set of variables
W C (var(M) — V). For any [V']-component C, let edges(C) = {h € edges(H) | hNC # 0}.

Let HD = (T, x, A) be a hypertree for a hypergraph 7. For any vertex v of 1T, we will often use v
as a synonym of x(v). In particular, [v]-component denotes [x(v)]-component; the term [v]-path is a
synonym of [y(v)]-path; and so on.

Definition 12 (Normal form) A hypertree decomposition HD = (T, x, A) of a hypergraph # is in
normal form (NF) if for each vertex r € wvertices(1'), and for each child s of r, all the following
conditions hold:

1. there is (exactly) one [r]-component C'. such that x(15) = C, U (x(s) N x(r));

2. x(s) N C, # 0, where C, is the [r]-component satisfying Condition 1;

3. foreach h € A(s), hnwvar(edges(C,)) # 0, where C, is the [r]-component satisfying Condition 1;
4. x(s) = var(edges(C,)) N var(A(s)), where C, is the [r]-component satisfying Condition 1.

Note that, from Condition 4 above, the label x(s) of any vertex s of a hypertree decomposition in
normal form can be computed just from its label A(s) and from the [r]-component satisfying Condition 1
associated to its parent r.

Theorem 4 For each k-width hypertree decomposition of a hypergraph H there exists a k-width hyper-
tree decomposition of H in normal form.

23

The normal form theorem above immediately entails that for each optimal hypertree decomposition
of a hypergraph # there exists an optimal hypertree decomposition of 4 in normal form.

Figure 10 shows the Algorithm opt-k-decomp that, given a hypergraph 7, computes an optimal
hypertree decomposition of 7 in normal form, whose width is bounded by some fixed & > 0 (if any).
The algorithm returns “failure” if no such a decomposition exists (i.e, if hw(#) > k). We will call k-
vertex any set of edges of H having cardinality at most k. The Algorithm opt-k-decomp is composed
of the two procedures Compute-CG and Weight-C(G, called one after the other.

The procedure Compute-CG computes a directed weighted graph CG' whose nodes are partitioned
in two sets V. and N,. Each node in V. is a pair (R, () where R is a k-vertex of 7, and C' is an
[R]-component. The node (root, V') is special, because V' is the set of all vertices of the hypergraph
‘H and root does not correspond to any k-vertex of . It will be the root vertex of any hypertree
decomposition computed by opt—-k-decomp. This node has no outgoing arcs.

Intuitively, for every node (R, C') € N., we solve the subproblem associated to the [R]-component
C'. Then, from the partial solutions computed for these subproblems, we are able to determine an optimal
hypertree decomposition of the whole hypergraph. Each node (R,C') € N. has some incoming arcs
from nodes in N,. Let (5, C') € N, be any of these nodes, where S is a k-vertex. Then S represents a
candidate for “breaking” the [R]-component C' of the hypergraph. The evaluation of this choice requires
the solution of smaller subproblems, one for each [S]-component C'’ of H such that C’ C C'. For this
reason, (.9, C') has an incoming arc from any such anode (S,C”) € N..

Node are weighted by the bottom-up procedure Weight-C(&. Nodes having no incoming arcs are
the starting point of the procedure and are weighted as follows: for each node (5,C') € N, with no
incoming arcs, set weight((.S,C')) = |S], i.e., its weight is the number of hyperedges in .S; for each node
(R,C) € N, with no incoming arcs, set weight((R,(C')) = oo, because in this case there is no k-vertex
S that can be used to decompose the [/2]-component C'. Then, for any vertex (R, ') in N, such that
all of its incoming nodes have been weighted, set weight((R, C')) = weight((S,C)), where (5, C) is its
best-weighted incoming node. For any vertex (.5, C') in [V, such that all of its incoming nodes have been
weighted, set weight((S,C')) = weight((R,C')), where (R, (') is its worst-weighted incoming node.
Intuitively, the best weighted incoming node for a node (R, C') € N. represents the & vertex chosen for
decomposing the [R]-component C'. Any node (5,C') € N, behaves differently, because there is no
choice to be done. Indeed, every [ST-component C' C C must be decomposed, hence the weight of
(.S, C') will be determined by the worst subproblem, i.e., by the worst-weighted incoming node.

Note that, in particular, the weight of the special node (root, V') will be the hypertree width of # if
hw(H) < k and oo otherwise.

After the execution of the procedure Weight-C(, the weighted graph C(G' contains enough informa-
tion to compute every optimal hypertree decomposition of # in normal form, if hw(H) < k. Figure 11
shows the procedure Compute-hypertree, which selects one optimal hypertree decomposition of 7 in
normal form. It proceeds top-down, starting from the special node (root, V') and recursively descending
along the graph, choosing at each step the best-weighted nodes. Indeed, these nodes corresponds to the
best solutions of the subproblems associated to the nodes of CG.

opt-k-decomp runs in O(n?*m?) time, where n and m are the number of edges and the num-
ber of vertices of #, respectively. This bound can be easily obtained by inspecting the procedures
of opt-k-decomp. Note that there are O(n*) k-vertices of #, and for each k-vertex R, O(m)
[R]-components. It follows that the graph CG has O(n*m) nodes in N, and O(n**m) nodes in N,.
Moreover, each node in N, has O(n*) incoming arcs at most, and each node in N, has O(m) incoming
arcs at most.

4.4 Cost-based Query Decompositions

We have described an algorithm that computes an optimal hypertree decomposition HD for a given
query (), and we observed that such a decomposition determines a partial query plan for 2, which can
be completed using well-known techniques. Denote by QP (HD) the completely specified query plan

24

ALGORITHM opt-k-decomp

Input: A Hypergraph # = (V, H).

QOutput: An optimal hypertree decomposition
of #, if hw(H) < k; failure, otherwise.

Var
CG = (N, U Ny, A, weight) : weighted directed graph;
HD = (T, x, A) : hypertree of ;

Procedure Compute-CGG
Ne:=A{(root, V)} U{(R,C) : Risa k-vertex
and C' is an [R]-component };
N, =0; A:=0;
For each (R,C) € N, Do
Let ec := UhEedges(C) var(h);
Let re := ec Nwvar(R);
For each k-vertex S Do
If var(S) N C # 6 And re¢ C var(S) And (Yh € S;hNec # () Then
Ny =N, U{(S,C) };
Add an arc from (5, C) to (R, C') in A;
For each (S,C") € N.s.t. ¢/ C C' Do
Add an arc from (S, C”) to (S, C') in A;
EndIf
endFor
endProcedure;

Procedure Weight-CG
weight((R, C)) := oo, forany (R,C) € N,
having no incoming arcs in CG;
weight((S, C)) := |S|, for any (S, C) € N,
having no incoming arcs in CG;
(* For any p € N, U Ny, let in(p) denote the number of
arcs coming into p from unweighted nodes *)
While there is some unweighted node in N, U N, Do
Let p = (S, C) be an unweighted node s.t. in(p) = 0;
If p € N, Then
weight(p) = min({weight(q)| (¢,p) € A});
Else (* p € Ny ¥)
weight(p) = max({|S[} U{weight(q)| (¢,p) € A});
EndWhile
endProcedure;

begin(* MAIN *)
Compute-CG;,
Weight-C(,
If weight((root, V')) = co Then
Output failure;
Else
Create a vertex root’ in T';
x(root’) := 0; A(root’) := 0;
Compute-hypertree((root, V'), root’);
Output HD
end.

Figure 10: Computing an optimal hypertree-decomposition

25

Procedure Compute-hypertree(p : CGnode; v : HDvertex)
Choose a minimum-weighted predecessor (.5, ') of p;
Create a new vertex s as a child of » in 77
A(s) == S;

x(s) :=var(S) N (CUx(r));
For each predecessor ¢ of (S, C') Do
Compute-hypertree(q, s);
endProcedure;

Figure 11: Procedure Compute-hypertree

for () computed from the decomposition HD, i.e., the relational expression specifying how to compute
Q(DB).> Note that the plan obtained by using Algorithm opt-k-decomp works well if we have no
accurate information on the relations involved in the query. However, if we are given sizes of relations,
attributes’ selectivity, etc., we can do much better. Indeed, in this case, we can guide the search for
hypertree decompositions towards those decompositions that guarantee the lowest (estimated) execution
cost for ().

Let & > 0 be a fixed bound on the width of hypertree decompositions we are interested in. Let DB
be a database and assume we are given quantitative information on the data in DB. Let cost be a function
that, given a relational expression (or a plan) /7 on DB, computes an estimation of executing 7/ on DB
according to the given quantitative information. We next present a new algorithm cost-k-decomp
that, given a Boolean query () and the information on DB, returns failure if hw(H(Q)) > k, otherwise
computes a cost-based optimal hypertree decompositionof ‘H, i.e., a decomposition HD of with at most &
such that cost(QP(HD)) is the minimum over all k£-bounded hypertree decompositions in normal form.
This algorithm can be applied also to non-Boolean queries) whose set of output (head) variables is
included in some atom belonging to the body of (7, with a slight modification of the algorithm. Indeed,
in this case the choice of the root of the hypertree in no longer arbitrary, but depends on such output
variables. Furthermore, it can be easily extended to general non-Boolean queries. We deal with these
issues in [41].

Note that for answering queries we need complete decompositions, where each atom occurs at least
once. However, our algorithms are designed to compute decompositions in normal form that, in general,
are not complete. Even if a complete decomposition can be easily and efficiently computed from any
hypertree decomposition, this is not sufficient in the cost-based approach. Indeed, it may happen that
the computed optimal decomposition is no longer optimal after we make it complete. To overcome this
problem, we may assume without loss of generality that every query () satisfies the following condition:
each atom p of () has a variable X', which does not occur in any other atom of (). We call unambigu-
ous the queries satisfying this property. Clearly, if a query is not unambiguous, it can be immediately
transformed into a query in this form by adding a fresh variable to each atom. Typically, quantitative
information on the database is not affected by this modification (or it can be properly extended, in a
straightforward way). Once a query plan has been computed for the transformed query, it can be cleaned
from such artificial fresh variables, thus obtaining a query plan for the original query. It is easy to verify
that all hypertree decompositions of unambiguous queries are complete, from Condition 1 in Definition
11. Moreover, for these queries, there is a one-to-one correspondence between atoms of ¢} and hyper-
edges of 7(Q)). Therefore, if p is an atom of an unambiguous query () on a database DB, we will refer
to the corresponding edge in 7(()) using the same name p and viceversa, as p is uniquely identified by
its variables. Recall that rel(p) denotes the relation in DB that corresponds to the atom (edge) p.

Figure 12 shows Algorithm cost-k-decomp. This algorithm is similar to opt-k-decomp,
but for the procedure Weight-C(i' that assigns weights to the nodes of the graph C{G. Roughly, in
opt-k-decomp the weight of a node p is the maximum width of any node in the subtree rooted at

SMore generally, plans also specify the algorithms to be used for each operator’s occurrence, and other low-level details that
we skip here for the sake of presentation. However, they can be easily included in a full implementation of our techniques.

26

p, while in cost-k-decomp it is a measure of the cost of evaluating the partial plan represented by the
subtree rooted at p, by using the given cost model.

Let HD = (T, x, A) be a hypertree decomposition in normal form for a query) on a database DB.
For any vertex p of T', let F'(p) denote the relational expression E(p) = M Hx(p) rel(h),i.e., the
join of all relations corresponding to hyperedges in A(p), suitably projected onto the variables in x(p).
Again, nodes having no incoming arcs are the starting point of the bottom-up procedure Weight-C(=, and
are weighted as follows: for each node p € N, with no incoming arcs, set weight(p) = cost(E(p)), i.e.,
its weight is the estimate of the cost of computing the expression F'(p); for each node (R, C') € N . with
no incoming arcs, set weight((R,(')) = oo, because in this case there is no k-vertex .S that can be used
to decompose the [R]-component C'. For any vertex p = (.5, C') in [V, such that all of its incoming nodes
have been weighted, set

weight(p) = cost(FE(p)) + Z mln {cost(E(p) x FE(p)) + weight(p')},

Emc
quc p

where inc(p) denote the set of the source nodes of all the arcs coming into p, i.e., inc(p) = {q | (¢,p) €
A}, weight(p') holds the estimate of evaluating the subtree rooted at the descendant p’, cost(F(p)) is the
cost of evaluating the relational expression for node p, and, for each ¢ € inc(p), cost(E(p) x E(p’))
is the cost of evaluating the semi-join of the already computed relational expression F(p’) of the “best”
child p’ of ¢ with F(p). Recall that all predecessors ¢ = (.5, C") in inc(p) correspond to components
C" C C to be decomposed. Intuitively, the above expression says that, for each of these nodes, we add
to the estimate for p the weight determined by the predecessor p’ = (R, (") of ¢ that guarantees the
minimum evaluation-cost (w.r.t. p).

The following example shows how we can employ Algorithm cost-k-decomp for computing a
query plan of a conjunctive query, given data information as the size of relations and the selectivity of
attributes, and a cost model for estimating the cost of evaluating relational expressions. This is a crucial
issue in query optimizers, and the literature reports many techniques for estimating such costs under
different assumptions on the data. See, e.g., [17], for algorithms and further references. In our example,
we employ a simple cost model where costs are measured in terms of the size of the relations computed
for answering the query. However, note that Algorithm cost-k-decomp is general enough to be used
with more sophisticated cost models, taking into account indices, number of disk accesses, and so on.

Example 7 Consider again query (71 in Example 6, and assume we have to evaluate this query on the
randomly generated database DB, whose quantitative information on the data are reported in Tables 2
and 3. In particular, Table 2 shows, for each atom p occurring in) 1, the number of tuples in the relation
rel(p) associated to p; Table 3 shows, for each variable X occurring in any atom p in () 1, the selectivity
of the attribute corresponding to X in rel(p), i.e., the number of distinct values X takes on rel(p) or,
equivalently, the cardinality of [] rel(p).

To use Algorithm cost-k-decomp we have to choose the function cost, i.e., to choose a cost model
for estimating the cost of evaluating each relational expression. In this example, costs are measured in
terms of the size of the relations computed. In particular, for any vertex p in CG, we have to estimate the
cost of the relational expression F(p), which is a join operation involving at most & relations, suitably
projected onto a subset of their attributes. Of course, there are different ways to perform these join opera-
tions. In our preliminary testing of cost-k-decomp, we estimate the cost of the k-way join associated
to each vertex assuming that the join selectivity criterion described in [17] is used to perform this oper-
ation. However, since k is typically very small, also exhaustive techniques are viable for choosing the
best plan for F/(p). A similar selectivity criterion has been used for choosing the best ordering for the
semi-join operations associated to the arcs coming into a node p of CG'. See [41] for all details, including
the estimates we used for every kind of relational operation (join, semi-join, projection, etc.).

Once we have fixed the cost model and a bound & > 0, we use cost-k-decomp for computing
a cost-based hypertree decomposition HD whose associated query plan QP (HD) for answering () ; on

27

ALGORITHM cost-k-decomp

Input: A query) on a database DB, quantitative information on) and DB,
and the hypergraph % = (V, H) associated to Q.

Qutput: A cost-based optimal hypertree decomposition
of H, if hw(H) < k; failure, otherwise.

Var
CG = (N, U Ny, A, weight) : weighted directed graph;
HD = (T, x, A) : hypertree of ;

Procedure Compute-CGG
Ne:={(root,V)} U{(R,C) : Risa k-vertex and C'is an [R]-component };
N, =0, A:=0;
For each (R,C) € N, Do
Letec := UhEedges(C) var(h);
Let re := ec Nwvar(R);
For each k-vertex S Do
If var(S) N C # 6 And re¢ C var(S) And (Yh € S;hNec # () Then
Ny =N, U{(S,C) };
Add an arc from (S5, C) to (R, C') in A;
For each (S,C") € N.s.t. ¢/ C C' Do
Add an arc from (S, C') to (S, C) in A;
EndIf
endFor
endProcedure;

Procedure Weight-CG
weight((R, C')) := oo, for any (R, C') € N, having no incoming arcs in CG;
weight((S, C)) := cost(E(p)), for any (5, C') € N, having no incoming arcs in CG;
(* Forany p € N, U N, let inc(p) denote the set of the source nodes of all the arcs coming into p,
ie., inc(p) = {q | (¢,p) € A} ¥
While there is some unweighted node in N, U N, Do
Let p = (S, C) be an unweighted node s.t. all nodes in inc(p) have been weighted;
If p € N, Then
weight(p) = min e inc(p) {weight(q) };
Else (*p € N, *)
If 3¢ € inc(p) s.t. weight(q) = oo Then
weight(p) = oo;
Else
weight(p) = cost(E(p)) + 3 e inc(p) MiNpreinc(q){cost(E(p) x E(p')) + weight(p') };
EndWhile
endProcedure;

begin(* MAIN *)
Compute-CG;,
Weight-C(,
If weight((root, V')) = oo Then
Output failure;
Else
Create a vertex root’ inT';
x(root’) := 0; A(root’) := 0;
Compute-hypertree((root, V'), root’);
Output HD
end.

Figure 12: Computing a cost-based optimal hypertree-decomposition

28

ATOM CARDINALITY
a(S, X, X'.C. F) 4606
b(S,Y,Y'.C" F') 2808
o(C,C", Z) 1748
d(X, 2) 3756
e(Y,7) 3554
f(FF, 2" 2892
9(X', 7") 4573
hY', 2" 3390
G XY, XY 4234

Table 2: Cardinality of the relations in Example 7

(SN CELYCR) e b ST

— / —
BRI} {5 $1904009) (EOCT (e 5 $T68572

g) s

)))

(0} () M1 [fe 954 |1 {4 $3156)

Figure 13: A cost-based optimal hypertree-decomposition of width 2 for () ¢

DB guarantees the minimum estimated cost over all (normal form) k-bounded hypertree decomposition
of Q 1-

Figure 13 shows an optimal cost-based hypertree decomposition of ¢} ; (w.r.t. DB) if we fix the bound
k to 2. In the figure, each vertex v has a new label marked by the symbol $ that represents the estimated
cost for evaluating the subtree rooted at v. In particular, for each leaf ¢, this number will be equal to
cost(E(()); for the root r of the hypertree, this number gives the estimated cost of the whole evaluation
of Q1 (DB). In our example, this cost is 3521741.

Recall that ()1 is a cyclic query, having hypertree width 2, thus there is no hypertree decomposition
of width 1 for (1, and k£ = 2 is the lowest bound such that cost-k-decomp is able to compute de-
composition for (1. However, any value larger than 2 is feasible, and so we have run cost-k-decomp
with & ranging from 2 to 5. Figures 14 and 15 show two optimal cost-based decompositions for £ = 3
and £ = 4, whose estimated costs are 1373879 and 854867, respectively. For £ = 5 we get the same
value as for k£ = 4.

It turns out that, even if the hypertree width of () is 2, for the given quantitative information on
DB and the cost model we have chosen, the bounds 4 and 5 lead to the best query plans. This is not
surprising, as a larger bound % allows us to explore more decompositions, containing larger vertices
with more associated join operations. Note that these vertices are not optimal from a purely structural
point of view, and are in fact discarded by Algorithm opt-k-decomp, which just looks for low-width
decompositions.

S Conclusions and Open Issues

In this paper we have presented an original approach to view materialization in which NGPSJ expressions
are used to model both queries and candidate views. An algorithm for selecting the minimal set of
candidate views by incrementally inserting queries into a directed acyclic graph has been proposed; the
algorithm is efficient since, every time a query is inserted, only a portion of the graph is visited.

We have also shown how cardinality constraints derived from the application domain may be em-
ployed to determine effective bounds on the cardinality of aggregate views. In order to devise a compre-

29

ATOM VARIABLE | SELECTIVITY
a(S, X, X",.C, F) S 14
a(S, X, X',C, F) X 24
a(S, X, X',C, F) X' 16
a(S, X, X',C, F) C 21
a(S, X, X',C, F) F 15
b(S,Y,Y' C", F") S 17
b, Y, Y, ",) Y 5
b(S,Y, Y, C", F") Y 12
b(S,Y,Y' C', F') c’ 20
b(S,Y, Y, C", F") F 7
(C.C", 7) C 18
o(C,C", Z) c’ 7
o(C,C", Z) Z 19
d(X,2) X 18
d(X,7) Z 7
e(Y, 7) % 21
e(Y,7) Z 13
fFF 2 F 20
FFF 2 P 7
fFF 2 Z 6
g(X', 2" X' 22
9(X', 2") Z 16
h(Y', Z") Y 15
h(Y', 7" Z 12
G, X, Y, XY J 18
J(X, Y, XY X 8
G, X, Y, XY % 18
G, X, Y, XY X' 22
J(X, Y, XY Y 10

Table 3: Selectivity of the attributes for the database DB in Example 7

R G STy

(RN CELYCE) (o b 5) S6724)

~ ~
-
7 -

(8T) fa 5} SURET) WO (o g su6]

N / N
AN / AN
) i

(0} g M| [(Ln) fe) SIS RO (4 835

ey))

Figure 14: A cost-based optimal hypertree-decomposition of width 3 for () ¢

30

L) () ST

SNGELECE) ab f) S

- / ~_
— / .
—~ / ~

/ ~

wo) ®) (@) @ 6 [LeLea o i 2o

(L0 o) $B|mn) (4 s

Figure 15: A cost-based optimal hypertree-decomposition of width 4 for () ¢

hensive approach, several issues still need to be investigated. In particular, it is necessary to develop a
probabilistic model which, given a complex NGPSJ view, estimates its cardinality by properly taking its
selection predicates into account.

Finally, we faced the problem of populating and refreshing data warehouses. This operation typically
requires a number of complex and long queries. We presented a technique for answering efficiently such
queries, choosing query plans that guarantee low execution costs. This technique combines structural and
quantitative methods and is based on the notion of hypertree decomposition. We are currently developing
efficient implementations of the algorithms we presented in this paper, and we are tuning these algorithms
in order to deal with more general queries.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

[2] R. Agrawal, A. Gupta, and S. Sarawagi. Modeling Multidimensional Databases. In Proc. ICDE,
pages 232-243, Birmingham, UK, 1997.

[3] M. Akinde and M. Bohlen. Constructing GPSJ view graphs. In Proc. DMDW, Heidelberg, Ger-
many, 1999.

[4] E. Baralis, S. Paraboschi, and E. Teniente. Materialized view selection in multidimensional
databases. In Proc. 23rd VLDB, pages 156—165, Athens, Greece, 1997.

[5] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of acyclic
database schemes. Journal of the ACM, 30(3):479-513, July 1983.

[6] P.A. Bernstein and N. Goodman. The power of natural semijoins. SIAM Journal on Computing,
10(4):751-771, 1981.

[7] L. Cabibbo and R. Torlone. A framework for the investigation of aggregate functions in database
queries. In Proc. ICDT, Jerusalem, Israel, 1999.

[8] Ch. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical Computer
Science, 239(2):211-229, 2000.

[9] P. Ciaccia and D. Maio. On the Complexity of Finding Bounds for Projection Cardinalities in
Relational Databases. Information Systems, 17(6):511-515, 1992.

[10] P. Ciaccia and D. Maio. Domains and Active Domains: What This Distinction Implies for the
Estimation of Projection Sizes in Relational Databases. IEEE Transactions on Knowledge and
Data Engineering, 7(4):641-655, 1995.

31

[11] S. Cohen, W. Nutt, and A. Serebrenik. Algorithms for rewriting aggregate queries using views. In
Proc. DMDW, Heidelberg, Germany, 1999.

[12] A.D’Atriand M. Moscarini. Recognition algorithms and design methodologies for acyclic database
schemes. In P. Kanellakis, editor, Advances in Computing Research, pages 43—68. JAI press, 1986.

[13] Rina Dechter. Constraint networks. In Stuart C. Shapiro, editor, Encyclopedia of Artificial Intelli-
gence, pages 276-285. Wiley, 1992. Volume 1, second edition.

[14] R. Fagin. Degrees of acyclicity for hypergraphs and relational database schemes. Journal of the
ACM, 30(3):514-550, 1983.

[15] R. Fagin, A.O. Mendelzon, and J.D. Ullman. A simplified universal relation assumption and its
properties. ACM Transactions on Database Systems, 7(3):343-360, 1982.

[16] Gottlob G., Leone N., and Scarcello E. A comparison of structural csp decomposition methods.
Artificial Intelligence, 124(2), 2000.

[17] H. Garcia-Molina, J. Ullman, and J. Widom. Database system implementation. Prentice Hall, 2000.

[18] M. Golfarelli, D. Maio, and S. Rizzi. Applying vertical fragmentation techniques in logical design
of multidimensional databases. In Proc. DaWaK, pages 11-23, 2000.

[19] M. Golfarelli and S. Rizzi. Comparing Nested GPSJ Queries in Multidimensional Databases. In
Proc. DOLAP, pages 65-71, Washington, DC, 2000.

[20] N. Goodman and O. Shmueli. Tree queries: a simple class of relational queries. ACM Transactions
on Database Systems, 7(4):653—-6773, 1982.

[21] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunc-
tive queries. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science(FOCS-98), Los Alamitos, CA, pages 706—715, November 1998.

[22] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and tractable
queries. In Proceedings of the 18th ACM Symposium on Principles of Database Systems —
PODS’99, pages 21-32, May 31st — June 2nd 1999. To appear in Journal of Computer and System
Sciences.

[23] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Advanced parallel algorithms for pro-
cessing acyclic conjunctive queries, rules, and constraints. In Proceedings of the 2000 Conference
on Software Engineering and Knowledge Engineering (SEKE’00), Chicago, pages 167-176, July
2000.

[24] Georg Gottlob, Nicola Leone, and Francesco Scarcello. The complexity of acyclic conjunctive
queries. Journal of the ACM, 48(3):431-498, 2001.

[25] Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions: A survey. In
In Proceedings of MFCS’2001, pages 37-57, 2001.

[26] J. Gray, A. Bosworth, A. Lyman, and H. Pirahesh. Data-Cube: a relational aggregation opera-
tor generalizing group-by, cross-tab and sub-totals. Technical Report MSR-TR-95-22, Microsoft
Research, 1995.

[27] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data-warehousing envi-
ronments. In Proc. 21st VLDB, Zurich, Switzerland, 1995.

[28] H. Gupta. Selection of Views to Materialize in a Data Warehouse. In Proc. ICDT, pages 98—112,
Delphi, Greece, 1997.

32

[29] H. Gupta, V. Harinarayan, A. Rajaraman, and J. Ullman. Index Selection for OLAP. In Proc. ICDE,
pages 208-219, Birmingham, UK, 1997.

[30] H. Gupta and I.S. Mumick. Selection of views to materialize under a maintenance cost constraint.
In Proc. ICDT, Jerusalem, Israel, 1999.

[31] M. Gyssens, P.G. Jeavons, and D.A. Cohen. Decomposing constraint satisfaction problems using
database techniques. Journal of Algorithms, 66:57-89, 1994.

[32] M. Gyssens and L.V .S. Lakshmanan. A Foundation for Multi-Dimensional Databases. In Proc.
23rd VLDB, pages 106115, Athens, Greece, 1997.

[33] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing Data Cubes Efficiently. In Proc. ACM
Sigmod Conf., pages 205-216, Montreal, Canada, 1996.

[34] W. Hou and G. Ozsoyoglu. Statistical Estimators for Aggregate Relational Algebra Queries. ACM
Transactions on Database Systems, 16(4):600-654, 1991.

[35] R. Kimball. The data warehouse toolkit. John Wiley & Sons, 1996.

[36] P. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction. In
Proceedings of Symposium on Principles of Database Systems (PODS’98), Seattle, Washington,
pages 205-213, 1998.

[37] H.J. Lenz and A. Shoshani. Summarizability in OLAP and statistical databases. In Proc. Statistical
and Scientific Database Management, Washington, 1997.

[38] D. Maier. The Theory of Relational Databases. Computer Science Press, 1986.

[39] EM. Malvestuto. Modelling large bases of categorical data with acyclic schemes. In Proceedings
of the First International Conference on Database Theory, Rome, Italy,, 1986.

[40] M. V. Mannino, P. Chu, and T. Sager. Statistical Profile Estimation in Database Systems. ACM
Computing Surveys, 20(3):191-221, 1988.

[41] A. Mazzitelli. Progettazione e sviluppo di tecniche di decomposizione per la valutazione efficiente
di interrogazioni congiuntive di basi di dati. Master’s thesis, Universitd della Calabria, 2002.

[42] M. Muralikrishna and D.J. DeWitt. Equi-depth Histograms for Estimating Selectivity Factors for
Multi-Dimensional Queries. In Proc. ACM Sigmod Conf., pages 28-36, Chicago, IL, 1988.

[43] C.H. Papadimitriou and M. Yannakakis. On the complexity of database queries. In Proceedings of
Symposium on Principles of Database Systems (PODS’97), Tucson, Arizona, pages 12—19, 1997.

[44] N. Robertson and P.D. Seymour. Graph minors ii. algorithmic aspects of tree width. Journal of
Algorithms, 7:309-322, 1986.

[45] K. Ross and D. Srivastava. Fast Computation of Sparse Datacubes. In Proc. 23rd VLDB, pages
116-125, Athens, Greece, 1997.

[46] K. A. Ross, D. Srivastava, and D. Chatziantoniou. Complex aggregation at multiple granularities.
In Proc. ICDE, 1998.

[47] K. A. Ross, D. Srivastava, P. J. Stuckey, and S. Sudarshan. Foundations of aggregation constraints.
Theoretical Computer Science, 193(1-2):149-179, 1998.

[48] D. Sacca. Closures of database hypergraphs. Journal of the ACM, 32(4):774-803, 1985.

33

[49] Y. Sagiv and O. Shmueli. Solving queries by tree projections. ACM Transactions on Database
Systems, 18(3):487-511, 1993.

[50] Francesco Scarcello. Answering queries: Tractable cases and optimizations, d2r3-cofin2000. Tech-
nical report, DEIS, 2001.

[51] A. Shoshani. OLAP and statistical databases: similarities and differences. In Proc. CIKM,
Rockville, Maryland, 1996.

[52] A. Shukla, P. Deshpande, J. Naughton, and K. Ramasamy. Storage Estimation for Multidimensional
Aggregates in the Presence of Hierarchies. In Proc. 22nd VLDB, pages 522-531, Mumbai, India,
1996.

[53] D. Theodoratos and M. Bouzeghoub. A General Framework for the View Selection Problem for
Data Warehouse Design and Evolution. In Proc. DOLAP, pages 1-8, Washington, DC, 2000.

[54] D. Theodoratos and T. Sellis. Data warehouse configuration. In Proc. 23rd VLDB, pages 126—135,
Athens, Greece, 1997.

[55] J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science Press,
1989.

[56] M. Vardi. Complexity of relational query languages. In Proceedings of the 14th ACM Symposium
on Theory of Computing, (STOC ’82), pages 137-146, 1982.

[57] P. Vassiliadis. Gulliver in the land of data warehousing: practical experiences and observations of
a researcher. In Proc. DMDW, pages 12/1-12/16, Stockholm, Sweden, 2000.

[58] A.N. Wilschut, J. Flokstra, and P. M.G. Apers. Parallel evaluation of multi-join queries. In Pro-
ceedings of SIGMOD’95, CA, USA, pages 21-32, 1995.

[59] W.P. Yan and P. Larson. Eager and lazy aggregation. In Proc. 21st VLDB, pages 345357, Zurich,
Switzerland, 1995.

[60] M. Yannakakis. Algorithms for acyclic database schemes. In Proceedings of the 7th Conference on
Very Large Databases, Morgan Kaufman pubs. (Los Altos CA), Zaniolo and Delobel(eds), Septem-
ber 1981.

[61] C.T. Yuand M.Z. Ozsoyoglu. On determining tree-query membership of a distributed query. Infor,
22(3):261-282, 1984.

34

