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1 Introduction

In recent years, advances in hardware and systems for automated data acquisition, such as

geographic satellites, for the recording of business transaction such as bar code technology, and

mass storage devices have led an increasing number of organizations to accumulate huge amounts

of business, scienti�c and demographic data. Such large repositories of data are usually kept

o�-line because owning organizations are unable to turn them into usable information. In fact,

although it is widely accepted that large data repositories may contain evidence of knowledge

which could be highly valuable in a business or scienti�c environment, the task of exploring and

analyzing large bodies of data remains at present a very diÆcult one.

On one hand, it is apparent that only a minimal fraction of a large data body can be

explored or analyzed by traditional methods. In fact, such methods are based on either a direct

interaction with the retrieved data, or simple summaries and reports, or statistical and machine

learning algorithms which however are not designed to cope with very large data sets, and are

thus generally unusable.

On the other, the exploration and analysis of data is an important task in the environments

where database systems are traditionally deployed, but current database systems do not provide

the functionalities to help analysts in performing it. Notably, the technology to provide such

functionality has not been an important area of database research which, for some decades, has

satis�ed the demand for a technology of distributed information systems with great emphasis on

eÆcient and reliable storage and retrieval of very large amounts of data, capable of concurrency

and access control.

For the above reasons, there is general consensus among researchers involved in the disciplines

related to data and information management and analysis, including machine learning, expert

systems, database systems, statistics, and data visualization, that there is a need for a new

generation of tools for automated data mining and knowledge discovery. The attempt to satisfy

this need has resulted in the emerging �eld of research referred to as Knowledge Discovery in

Databases (KDD).

A concise de�nition of KDD can be found in [35]:

Knowledge discovery in databases is the non-trivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in data.

The de�nition above can be brie
y explained as follows. The objects which we search for are

patterns, i.e., expressions in some language stating properties in a subset of the data which are

\simpler" than the data. Such patterns must be valid, in that they must hold to a certain extent

in new data, novel, that is previously unknown, potentially useful to the organization owning

the data as a factor in a decision making process, and ultimately understandable by humans in

order to explain the structure of the data and interpret the results. Notice that KDD is de�ned

as a process since it is generally an activity performed by iterating a sequence of stages (data

preparation, search for patterns, evaluations of results, re�nement).

KDD is distinct from data mining, which is de�ned in [35] as follows:

Data mining is a step in the KDD process consisting of particular data mining al-

gorithms that, under some acceptable computational eÆciency limitations, produces

a particular enumeration of patterns.

In the last few years, several data mining algorithms and related techniques have been

proposed. It is beyond the scope of this introduction to review all of them. Here we will

succinctly describe some of the most popular ones.

Classi�cation. It is de�ned as the learning from the data of a function to map, or classify,

data points into classes. Such a function can be used straightforwardly in deciding which action
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to take if the classes are naturally associated to di�erent actions, e.g. deciding whether or not

to grant a loan to a customer.

Association Rules. Statements of conditional distribution between two events of the form

fA1 ^ : : : ^ An�1g and fA1 ^ : : : ^ Ang, where A1; : : : ; An are taken from a set of boolean

properties which are meaningful in the database, and represent propositions that are true in

the event. For instance,
jfBread^Butter^Milkgj

jfBread^Buttergj
= :9; meaning \90% of the transactions which

contain bread and butter also contain milk", is an association rule in a transaction database

[2]. A typical application of association rules is in the improvement of selling strategies of large

retailing companies.

Metaquerying. Metaqueries [65] are generic descriptions of classes of patterns from a re-

lational database. For instance, a metaquery T  L1; : : : ; Lm, where T and Li are literal

schemes Q(Y1; : : : ; Yn), can be instantiated, or answered, by substituting the predicate variables

with predicate (i.e. relation) names from the database. Notice that, unlike association rules,

metaqueries link information from several tables. Therefore a typical application of metaquery-

ing is in discovering conditional patterns in complex relational databases.

Clustering. Clustering, or cluster analysis, is a method for data exploration, originally pro-

posed by statisticians, whose aim is to group data according to some notion of similarity [46]. In

the optimal case, this leads to a maximal similarity between members of the same group and to

minimal similarity between members of di�erent groups. Clustering is useful when knowledge

about the existence of homogeneous sub-populations in the data helps in deciding which speci�c

actions to take for each sub-population, e.g. in psychiatry, medicine, social services, and market

research [32].

Approximate Similarity Queries. Similarity queries between two objects are frequently

used in data exploration and mining: Clustering is often based on a notion of similarity between

objects, and thus requires similarity queries to be executed; the exploration of multimedia

databases can be performed iteratively by query execution and re�nement. In all applications

(such as the above) where multiple expensive similarity queries have to be executed, the user

may be willing to accept a time/quality trade-o�, i.e. an error with respect to the exact case is

traded for an often dramatic improvement in execution time.

Data Visualization. Various data visualization modalities, together with other techniques

speci�cally oriented to the discovery of correlation or rules, are often used in data mining systems.

These visualization modalities are often used to support other techniques, essentially to visualize

database results. Furthermore, the availability of di�erent visualizations allows the user to

discover new properties, their correlation and �nd any unexpected values. The user may apply

other data mining techniques for further analysis of such \unusual", or rather interesting data.

For this reason, data visualization can be seen as a data mining method by itself.

In the rest of the report, we review in greater depth the last four data mining techniques

above: Metaquerying, clustering, similarity search, and data visualization. In particular, in

each of the four parts we made an e�ort to �nd out a common model to compare results and

applicability.
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Part I

Metaquerying (Giovanbattista Ianni and Luigi Palopoli)

2 Introduction

Metaquerying [65] (also called metapattern) is a promising approach for datamining in relational

and deductive databases. Metaqueries serve as a generic description of a class of patterns a user

is willing to discover. Unlike many other mining tools, patterns discovered using metaqueries can

link information from several tables in databases. These patterns are all relational, while most

machine-learning systems can only learn propositional patterns and/or work on a single relation.

Metaqueries can be speci�ed by human experts or alternatively, they can be automatically

generated from the database schema.

Intuitively, a metaquery has the form

T  L1; :::; Lm (1)

where T and Li are literal schemes Q(Y1; :::; Yn) and Q is either an ordinary predicate name

or a predicate variable. In this latter case, Q(Y1; :::; Yn) can be instantiated to an atom with

predicate symbol denoting a relation in the database. The instantiation must be done in a way

that is consistent with variable names. An answer to a metaquery is an (ordinary) rule obtained

by consistently substituting second order predicates with relation names.

Shen et al: [65] are, to best of our knowledge, the �rst who have presented a framework that

uses metaqueries to integrate inductive learning methods with deductive database technology.

For example (taken from [65]), let P ,Q, and R be predicate variables and DB be a database,

then the metaquery

R(X;Z) P (X; Y ); Q(Y; Z):

speci�es that the patterns to be discovered are relationships of the form

r(X;Z) p(X; Y ); q(Y; Z):

where p, q, and r are relations from DB. For instance, for an appropriate database DB, one

possible result of this metaquery is the rule:

speaks(X;Z) citizen(X; Y ); language(Y; Z): (2)

A rule which serves as an answer to a metaquery is usually accompanied by two indices, that

indicate its \plausibility degree". In [12], for example, each rule in the answer is supplied with

support and con�dence. The support indicates how frequently the body of the rule is satis�ed,

and the con�dence measures what fraction of the tuples that satisfy the body, also satisfy the

head. A con�dence of 0.93, for example, for the rule (2) means that out of all pairs (X;Z)

that satisfy the body of the rule, 93% also satisfy the head. An admissibility threshold for the

support and con�dence is usually provided by the user.

Similar to the case of association rules, the notions of support and con�dence and other

indexes have two major purposes:

1. to avoid presenting negligible information to the user.

2. to cut o� the search space by early detection of low support and con�dence.
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Support and con�dence have been also de�ned for other datamining techniques such as associ-

ation rules [3].

Metaquerying was implemented in several datamining systems [65, 26, 27] and was arguably

very useful in knowledge discovery [73, 65, 57, 37]. Theoretical studies about this technique can

be found in [12] and [7].

In the following we will provide a formal de�nition of the concept of metaquery, and of

the most common plausibility indices. Then, we will overview on systems which featured some

version of metaquerying. Next, we will show some of the computational issues related to this

technique, and we will outline some fundamental di�erence between metaquerying and associ-

ation rules.

3 What is a metaquery and how to evaluate it

Let U be a countable domain of constants. A database DB is (D;R1; ::::; Rn) where D � U is

�nite, and each Ri is a relation of �xed arity a(Ri) such that Ri � Da(Ri).

unless As stated above, a metaqueryMQ is a second-order template describing a pattern to

be discovered [65]. Such a template has the form

T  L1; :::; Lm (3)

where T and Li are literal schemes. Each literal scheme T or Li has the form Q(Y1; :::; Yn) where

Q is either a predicate (second order) variable or a relation symbol, and each Yj (1 � j � n) is an

ordinary (�rst order) variable. If Q is a predicate variable, then Q(Y1; :::; Yn) is called a relation

pattern of arity n, otherwise it is called an atom of arity n. The right-hand-side L1; :::; Lm is

called the body of the metaquery, while T is called the head of the metaquery. A metaquery is

called pure if each of its relation patterns with the same predicate variable has the same arity.

Intuitively, given a database instance DB, answering a metaquery MQ on DB amounts to

�nding all substitutions � of relation patterns appearing in MQ by atoms having as predicate

names relations in DB, such that the Horn rule �(MQ) (obtained by applying � to MQ)

encodes a dependency between the atoms in its head and body. The Horn rule is supposed to

hold in DB with a certain degree of plausibility. The plausibility is de�ned in terms of indexes

which we will formally de�ne shortly.

Let MQ be a metaquery and DB a database. Let pv(MQ), ls(MQ), and rep(MQ) denote

the set of predicate variables, the set of literal schemes, and the set of relation patterns occurring

in MQ, respectively (note that rep(MQ) � ls(MQ). Moreover, let rel(DB) denote the set of

relation names of DB and ato(DB) denote the set of all the atoms of the form p(T1; : : : ; Tk)

where p 2 rel(DB), k is the arity of p, and each Ti is an ordinary variable .

Semantics is de�ned via types of metaquery instantiations: an instantiation type speci�es

how relation patterns can be instantiated, turning a metaquery to an ordinary Horn rule over the

given database. Next, we de�ne three di�erent types of metaquery instantiations, that we call

type-0, type-1 and type-2, respectively. In the literature, metaquerying semantics has not been

always precisely de�ned, even if a kind of type-2 semantics is usually assumed (see, e.g.,[58]).

De�nition 3.1 Let MQ be a metaquery and DB a database. An instantiation (on MQ and

DB) is a mapping � : rep(MQ) ! ato(DB), whose restriction �0 : pv(MQ) ! rel(DB) is

functional.

The condition above says that predicate names ofMQ are consistently substituted with relation

names from DB.

De�nition 3.2 Let MQ be a pure metaquery. An instantiation � is type-0 if for any relation

pattern L and atom A, �(L) = A implies that L and A have the same list of arguments.
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That is, under type-0 semantics, each predicate variable is always matched to a relation with

the same arity and ordinary variables are left untouched. As an example, consider the database

DB1 shown in Figure 1 and the metaquery

R(X;Z) P (X; Y ); Q(Y; Z) (4)

A possible type-0 instantiation for MQ is

� = fhR(X;Z);UsPT(X;Z)i; hP (X;Y );UsCa(X; Y )i; hQ(Y; Z);CaTe(Y; Z)ig

which yields the following Horn rule when applied to MQ:

UsPT(X;Z) UsCa(X; Y );CaTe(Y; Z)

De�nition 3.3 Let MQ be a pure metaquery. An instantiation � is type-1 if for any relation

pattern L and atom A, �(L) = A implies that the arguments of A are obtained from arguments

of L by permutation. consistently mapped by �

With type-1 instantiations, variable ordering within relation patterns \does not matter". As an

example, under this semantics, from metaquery (4) and DB1, among others, both the following

Horn rules can be obtained:

UsPT(X;Z) UsCa(X; Y );CaTe(Y; Z)

UsPT(X;Z) UsCa(Y;X);CaTe(Y; Z)

The third type of instantiation takes a step further by allowing a relation pattern of arity k

to be matched with an atom of arity k0, with k0 � k, padding \remaining" arguments to free

variables:

De�nition 3.4 LetMQ be a metaquery. An instantiation � is type-2 if for any relation pattern

L and atom A, �(L) = A implies the following:

� the arity k0 of A is greater-than or equal-to the arity of L;

� k of the arguments of A coincide with the k arguments of L, possibly occurring in di�erent

positions;

� the remaining k0�k arguments ofA are variables not occurring elsewhere in the instantiated

rule.

With type-2 instantiations we can express interesting patterns ignoring how many extra attrib-

utes a physical relation may have. Should the relation UsPT be de�ned with an additional

attribute, as in Figure 2, the metaquery (4) can be instantiated, using a type-2 instantiation, to

UsPT(X;Z; T ) UsCa(Y;X);CaTe(Y; Z)

User Carrier

John K. Omnitel

John K. Tim

Anastasia A. Omnitel

Carrier Technology

Tim ETACS

Tim GSM 900

Tim GSM 1800

Omnitel GSM 900

Omnitel GSM 1800

Wind GSM 1800

User Phone Type

John K. GSM 900

John K. GSM 1800

Anastasia A. GSM 900

Figure 1: The relations UsCa, CaTe, and UsPT of DB1
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User Phone Type Model

John K. GSM 900 Nokia 6150

John K. GSM 1800 Nokia 6150

Anastasia A. GSM 900 Bosch 607

Figure 2: The new relation UsPT

Note that a type-0 instantiation is a type-1 instantiation where the chosen permutation of

relations's attributes is the identity, whereas a type-1 instantiation is a type-2 instantiation,

where the arity of the atoms matches the arity of the relation patterns they are substituted for.

Note, moreover, that type-2 instantiations may apply to any metaquery, while type-0 and

type-1 instantiations require pure metaqueries.

4 Plausibility Indexes

In datamining applications, one is generally interested in discovering plausible patterns of data

that represent signi�cant knowledge in the analyzed data sets. In other words, it is not typically

required for a discovered pattern to absolutely characterize the entire given data set, but a

signi�cant subset thereof. This idea is embedded in the usage of plausibility indexes. In the

literature, several plausibility indices de�nitions are found, such as support, con�dence, base and

strength [58, 12, 3]. In fact, support is similar to base and con�dence is similar to strength [12].

In the analysis that follows, we shall use support, con�dence and another useful index that we

call cover. We �rst provide formal de�nitions of the indices that we use.

For any set F , let jF j denote its size. We assume the reader is familiar with relational

algebra and Datalog (see [83]). Unless otherwise speci�ed, a predicate name p will denote its

corresponding underlying relation as well, and an atom p(X) will denote the corresponding

database relation, where the list of arguments X is used, as in Datalog, to positionally refer to

p's columns. For a set of atoms R, att(R) is the set of all the variables of all the atoms in R,

and J(R) is the natural join of all the atoms in R.

De�nition 4.1 A plausibility index, or index in short, is a function which maps a database

instance DB and a Horn rule h(X) b1(X1); :::; bn(Xn) (de�ned overDB) to a rational number

representing a value within [0; 1].

De�nition 4.2 Let R and S be two sets of atoms. Then the fraction of R in S, denoted R " S,
is

j�att(R)(J(R) ./ J(S))j

jJ(R)j
:

In particular, whenever j�att(R)(J(R) ./ J(S))j = 0, R " S is equal to 0.

De�nition 4.3 Let r be a Horn rule and let DB be a database. Let h(r) and b(r) denote the

sets of atoms occurring in the head and in the body of r, respectively. Then

� the con�dence of r is cnf(r) = b(r) " h(r),

� the cover of r is cvr(r) = h(r) " b(r),

� the support of r is sup(r) = maxa2b(r)(fag " b(r));
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In the sequel, the set of plausibility indexes fcnf; cvr; supg will be denoted I.

Intuitively, sup(r) measures how much the body (or part of it) of an instantiation contains

satisfying tuples. When an instantiation scores an high support, a pattern search algorithm

may conclude that it is worth to further consider such an instantiation, because there is at least

one relation with a high percentage of its tuples satisfying the instantiated body. The concept of

base [58] is similar. A technical discussion about di�erences between these two indices is carried

out in [12].

When an instantiation scores a high con�dence, we can conclude that a high percentage of

the assignments which satisfy the body also satisfy the head relation. Hence, con�dence implies

how much valid the rule is over the given database. Given a rule r, the indices cnf(r) and sup(r)

are equivalent to con�dence and support de�ned in [12]. The purpose of strength [58] is similar

to con�dence.

Conversely, cover tells which is the percentage of implied tuples belonging to the head rela-

tion. The latter index is found useful in those application where is necessary to decide if it is

worth to store the head relation or to compute it with a reasonably matching view.

5 State of the art evaluation systems

5.1 EÆcient metaquery answering

The Fleximine environment [28] provides a complete KDD system, designed as a testbed for

datamining research. Its open-ended design allows the integration of many existing datamining

techniques such as association rule induction and metaquerying. A detailed description on

how metaquerying is implemented in Fleximine can be found in [12]. Algorithms employed

in Fleximine in order to answer metaqueries are similar to classical Constraint Satisfaction

techniques. Fleximine employs a very simple CSP algorithm (forward checking with Back-

jumping [24]), and the indices used are support and con�dence. The basic instantiation algorithm

is shown in Figure 3.

At the end of the stage (if it succeeds) each relation pattern R(X1; :::; Xn) that appear in

the metaquery is instantiated. That is, R is bound to some relation name r and each variable

is bound to an attribute (\�eld") of the relation. We assume that a procedure att(r;X) can

return the attribute in r to which the variable X is bound.

Next, a �ltration stage carries out the following steps: �ltering out rules with low support,

and �ltering out rules with low con�dence. Con�dence is computed only for rules with suÆcient

support. Fleximine focused so far on algorithms for computing support. Three alternatives are

proposed:

1. Join approach: the straightforward way: computing the equijoin of the body of the rule,

then computing Si =
jJri j

jrij
for each instantiated relation ri in the body, and then taking

the maximum.

2. Histogram approach: Using histograms for estimating support. Computing the support

using the Join approach only for rules with high estimated support.

3. Histogram + memory approach: same as the histogram approach, except that intermediate

results are stored in memory, and reused whenever the same computation is requested.

The straightforward way to calculate the support is computing the support Si of each relation

by performing a natural Join, and then taking MaxfSij1 � i � mg. This is done by the Join

approach mentioned above. Since the Join is an expensive operation, some low-cost procedures

are introduced in order to guarantee an early detection of low support. The other two approaches

compute an upper bound on the support and then compute the exact support only for rules
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1. Instantiate(SR)

2. Input: SR: a set R0; R1; :::; Rn of relation patterns, partially instantiated, each with a set of

constraints C0; :::; Cn. Initially the constraints sets are all empty.

3. Output: Relations r0; r1:::rn that match the relation patterns in SR with the variables bound

to attributes.

(a) If SR is completely instantiated then return SR.

(b) Pick the next uninstantiated relation variable Ri from SR, fhere we should use CSP

variable ordering techniques to chooseg

(c) Pick up the next possible instantiation r to Ri (r should meet the constraints in Ci and

should be of the same arity as Ri). fhere we should use CSP value ordering techniques

to chooseg

(d) For each relation pattern Rj not yet instantiated do:

i. if Rj has a common �eld variable X with Ri, add to the Cj the constraint that X

must be bound to an attribute with type TX , where TX is the type of the attribute

that X is bound to in r.

(e) Call Instantiate recursively.

Figure 3: Algorithm for the instantiation stage

1. compute-support(r1; :::; rm, MinSupport)

2. Input: Set of relations r1; :::; rm, where each of the attributes is bound to a variable. A support

threshold MinSupport.

3. Output: if the rule whose body is r1; :::; rm has support equal or larger than MinSupport,

return the support, otherwise return �1.

4. RelSetCopy = RelSet = fr1; :::; rmg; LowSupp = true;

5. While (RelSet 6= ;) and LowSupp do

(a) Let r 2 RelSet;

(b) s = Si-upbound(r;RelSetCopy);

(c) i. if s �MinSupport then LowSupp = false

ii. else RelSet = RelSet � frg;

6. (a) If LowSupp then return �1

(b) else return Join-support(r1; :::; rm)

Figure 4: computing support for a rule body
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1. Si-upbound-brave(ri,R)

2. input: A relation ri and a set of relations R.

3. output: An upper bound on Si for a rule whose body is R [ frig.

4. s = 1:0

5. If there is r0 2 R such that r0 and ri have a common variable X then

s =upbound(ri; r
0; att(ri; X); att(r0; X));

6. return s;

Figure 5: computing Si bravely

1. Si-upbound-cautious(ri,R)

2. input: A relation ri and a set of relations R.

3. output: An upper bound on Si for a rule whose body is R [ frig.

4. s = 1:0

5. (a) for each relation r0 in R such that ri and r0 have variables in common

(b) do

i. for each common variable X of ri and r0

ii. do

s0 =upbound(ri; r
0; att(ri; X); att(r0; X));

if s0 < s then s=s';

6. return s;

Figure 6: computing Si cautiously

with high enough upper bound of support. The idea is summarized in Algorithm compute-

support in Figure 4. Note that once one relation with high Si is found, the procedure Join-

support(r1; :::; rm) is called. This procedure simply computes the exact support using Join.

The procedure Si-upbound called by the algorithm compute-support returns an upper bound

for the value Si for a single relation ri in the body of the rule. This can be done by one of the two

procedures: Si-upbound-brave or Si-upbound-cautious, shown in Figures 5 and 6, respectively.

The basic idea is that an upper bound can be achieved by taking the join of a relation ri with any

other relation with which ri has variables in common. Procedure Si-upbound-brave does this by

picking one arbitrary relation with which ri has a common variable, and procedure Si-upbound-

cautious does this by considering all relations with which ri has variables in common, and taking

the minimum. Procedure Si-upbound-cautious works harder than procedure Si-upbound-brave

but it achieves a tighter upper bound and hence can save more Join computations.

5.2 Data type handling

When we deal with real life databases, some issue arise towards data types involved in a

metaquery instantiation. Of course, several instantiations may not make sense since they could

be link attributes with di�erent data types from di�erent tables. An approach intended to early

exclude from evaluation those instantiated metaqueries which do not meet data types constraint,

can be found in [58]. This paper introduces the concept of overlap. Two attribute from di�erent

tables cannot be joined if they do not share a appropriately large set of values. Let Cx and Cy

be two attributes and Vx and Vy be their value sets, respectively. The overlap is
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1. upbound-histo(r1; r2; att1; att2)

2. input: Two relations r1 and r2, att1 an attribute of r1, att2 an attribute of r2. att1 and att2
are of the same type.

3. output: An upper bound on the support where only r1 and r2 are considered.

4. Let U be the set of all distinct values in att1 of r1 and att2 of r2.

5. Let h1 be a histogram with domain U of the values in att1 of r1. (If there is no such histogram,

build it).

6. Let h2 be a histogram with domain U of the values in att2 of r2. (If there is no such histogram,

build it).

7. return Histo(r1; r2; h1; h2; jU j);

Figure 7: Computing support from histograms

Overlap(Cx; Cy) = max

�
jVx \ Vyj

jVxj
;
jVx \ Vyj

jVyj

�
An overlap table may be employed in order to eliminate unnecessary connections (e.g. height

vs. temperature) and/or to drive automatic pattern generation.

5.3 Unsupervised generation of metapattern

Since the task of generating suitable metaqueries could be a heavy burden for the end user, some

completely automatic metaquery generation system has been introduced [65, 58]. The proposed

approach consists in starting with a set of most general metapatterns, and incrementally generate

the interesting ones as the process of discovery continues. The search process is not complete,

but guided in (hopefully) fruitful directions by plausibility indixes. [58] proposes a speci�c

approach for what is called the transitivity pattern class. The automatic pattern generation is

done by considering all the patterns belonging to the considered class, and by literal pattern

insertion. The underlying idea is that adding a literal pattern to a metaquery can improve the

strength (or the con�dence) of instantiated rules. As an example the metaquery

R1(Y3; Y1) P1(Y1; Y2); Q1(Y2; Y3); S1(Y2; Z) (5)

may have more chance to generate rules scoring an high value of con�dence with respect to the

metaquery

R1(Y3; Y1) P1(Y1; Y2); Q1(Y2; Y3)

from which 5 is derived from (although lower values for support are expected).

6 Computational Issues

We present here several results regarding the complexity of metaquerying. We assume the reader

is familiar with basic notions regarding complexity classes and, in particular, the de�nition of the

polynomial hierarchy [79]. Moreover, we recall that AC0 is the class of decision problems solved
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by uniform families of circuits of polynomial size and constant depth [10, 70], and LOGCFL

coincides with the class of decision problems logspace-reducible to a context free language [70]

As for the complexity of queries, metaquery complexity can be de�ned according to two

complexity measures, namely, combined complexity and data complexity [84]. Let T denote an

instantiation type out of f0; 1; 2g and I denote an index, i.e. a function that given a Horn rule

and a database instance returns a rational value 2 [0; 1]. Let DB denote a database instance,

MQ a metaquery, and k a rational threshold value s.t. 0 � k < 1. Then, the data complexity

of the metaquery problem hDB;MQ; I; kiT is the complexity of deciding if there exists a type-

T instantiation � for MQ such that I(�(MQ)) > k, when jDBj varies and k and MQ are

�xed. Furthermore, the combined complexity of the metaquery problem hDB;MQ; I; kiT is the

complexity of deciding if there exists a type-T instantiation � for MQ such that, when jDBj
and jMQj varies and k is �xed, I(�(MQ)) > k.

In the literature it is usually assumed that, in answering a metaquery MQ, one looks for

rules that satisfy MQ and have a certain level of support and con�dence [12, 58]. Here we

preferred to split the metaquery problem as to refer to one index at a time. The rationale is

the following. First, this allows us to single out more precisely complexity sources. Second,

technical presentation is simpler this way. Third, complexity measures for problems involving

more than one index can be obtained fairly easily from metaquerying problems having only one

index. The forthcoming results are taken from [7]. We begin by analyzing the cases when the

threshold value k is set to 0.

Theorem 6.1 Let I 2 I. The combined complexity of hDB;MQ; I; 0iT is NP-complete, for

any instantiation type T 2 f0; 1; 2g.

Next, we consider the combined complexity of metaquerying when the �xed threshold k is s.t.

0 � k < 1.

Theorem 6.2 Let I 2 I. The combined complexity of hDB;MQ; I; kiT , with 0 � k < 1, and

instantiation type T 2 f0; 1; 2g is NP-complete if I = cvr or I = sup and it is in PSPACE if

I = cnf .

Thus, as far as the combined complexity measure is concerned, metaquerying is intractable.

Next we discuss some tractable subcases, dealing with the concept of acyclic metaquery.

De�nition 6.3 Let MQ be a metaquery. The set of (both predicate and ordinary) variables

of MQ is denoted var(MQ). De�ne the hypergraph H(MQ) = hV;Ei associated to MQ as

follows. V = var(MQ) and E contains an edge ei for each literal scheme ri(Xi) in MQ, where

ei is the set of variables occurring in ri(Xi). We say that MQ is acyclic if H(MQ) is acyclic.

For example, the metaquery

MQ1 = P (X; Y ) P (Y; Z); Q(Z;W )

is acyclic, whereas the slight di�erent metaquery

MQ2 = P (X; Y ) Q(Y; Z); P (Z;W )

is cyclic.

Theorem 6.4 Let MQ be an acyclic metaquery and I 2 I. The combined complexity of

hDB;MQ; I; 0i0 is LOGCFL-complete under logspace reductions.

However, acyclicity is not suÆcient to guarantee tractability in general, as shown next for

instantiation types other than type-0.
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Theorem 6.5 Let I 2 I and T 2 f1; 2g and letMQ be an acyclic metaquery, then hDB;MQ; I; 0iT
is NP-hard.

Similarly to most query languages, the data complexity is much lower than the combined

complexity. In particular, in some interesting case, it lies very low in the complexity hierarchy,

as proven next.

Theorem 6.6 Under the data complexity measure (�xed metaquery and threshold value, variable

database instance), hDB;MQ; I; 0iT is in AC0, for any I 2 I and for any T 2 f0; 1; 2g.

In the general case, the data complexity of metaquerying is within P.

Theorem 6.7 The data complexity of the metaquerying problem hDB;MQ; I; k; T i, 0 � k < 1

is in P , for I 2 I and T 2 f0; 1; 2g.

7 Metaquerying and Association Rules

Roughly speaking, an association rule is a rule X ! Y , where X and Y are set of items [2].

The interest value of a rule is tested on a transaction database (i.e. a set of sets of items),

and, like metaqueries, interestingness is measured using the concepts of support and con�dence,

which are suitably de�ned (some other indexes of usefulness of an association rule are proposed

in [14] and [56]). Contrary to metaquerying techniques, association rules are largely studied in

literature for what it concerns eÆcient evaluation (e.g. [4, 18]), and maintenance (e.g. [19, 17]).

There exists many variants of that technique, such as sequential pattern [5], and generalized

association rules [78]. A preliminary result about computational properties of association rules

was given in [66].

Although both techniques may artfully simulate the other, the kind of patterns which can

be learned using association rules is more speci�c, and requires data stored on a single table,

whereas metaquerying takes advantage of relational schemes. Metaquerying can be directly

applied to native relations and/or on existing views as well; association rule learning systems

often need preprocessing steps in order to denormalize data on a single table, instead. The

denormalization process introduces problems for dealing with redundancy, and in building the

required transaction table. Such troubles are usually solved by human choice. Suppose you want

to mine association rules on the following set of relations:

Student(StudID; : : : ; Sex; : : :);Course(CourseID; : : : ;Hours; : : :);

Student Course(CourseID; StudID)

As an example, taking the join of these three tables would give wrong values for what it concerns

Sex percentages (e.g. there are students following many courses): thus the process of building a

transactions table from this preprocessed view should be careful. A good way to do this would

be denormalizing Student w.r.t. Course, i.e. building a table of transactions where each student

corresponds to a transaction and each course is a new (boolean) �eld telling if a given student

follows a given course. Conversely, one might be interested in Courses, and then the transaction

table should be built in a symmetric way (considering students as new �elds of Courses). In

general, the process of mining association rules involves decisional processes like this: thus,

although association rules represent a very useful data mining technique, its direct applicability

is sometimes diÆcult.
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Part II

Data clustering (Stefano Lodi and Claudio Sartori)

8 Introduction

Cluster analysis is a method for data exploration, originally proposed by statisticians, whose

aim is to group data according to some notion of similarity [46]. In the optimal case, this leads

to a maximal similarity between members of the same group and to minimal similarity between

members of di�erent groups.

More recently, cluster analysis has been proposed as a data mining activity [35], named data

clustering. In this environment the problem has further constraints, requiring eÆciency for data

sets which are much larger than the ones usually described in statistical or pattern recognition

literature. For such problem instances, algorithms with subquadratic complexity are the only

candidates to practical use. If the data set exceeds main memory size, then the additional

constraint of I/O minimization has also to be satis�ed.

Although the emphasis is placed on eÆciency, it is not the case that methods proposed

for data clustering trade e�ectiveness for eÆciency. Many research e�orts have contributed

original algorithms whose accuracy is comparable to known statistical methods. The problem

of clustering nonquantitative data has also received considerable attention. Generally, theories

for nonquantitative data imply weaker properties and are therefore less amenable to eÆcient

processing.

9 A Comparison Model

To establish a comparison model for data clustering algorithms, we separate design choices,

theoretical complexity, experimental eÆciency, and e�ectiveness in recognizing clustered data.

9.1 Design Choices

The approaches proposed in the literature will be classi�ed according to the following properties.

1. Mathematical structure of the data space.

2. E�ective construction of clusters.

3. Degree of dynamic processing (none, partial, full).

4. Cardinality reduction (such as random sampling).

9.1.1 Structure of the Data Space

Many data clustering algorithms are only enabled to process data which belong to speci�ed

mathematical structures, because designers can take advantage of mathematical properties to

achieve better eÆciency or accuracy.

We can thus classify the approaches into three categories according to the required structure.

Since mathematical structures form a hierarchy, we will classify an e�ort in the most general

category that describes it.

1. Quantitative Data: In this group, which includes two proposals, we collect all approaches

to the problem of clustering tuples of numerical data, which make use of, at least, the

vector sum operation.
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2. Categorical Data: Two e�orts deal with categorical data, i.e., sets of data tuples such that

no operation on values or tuples, and no predicate on values or tuples other that equality

can be considered meaningful. It is also assumed that the number of allowed values is

small. (At most in the order of thousands.)

3. Metric Data: The four proposals in this class require only the de�nition of a distance

function, that is, a real function of object pairs d : S � S ! R satisfying the four metric

axioms :

d(x; x) = 0 (6)

d(x; y) � 0 (nonnegativity) (7)

d(x; y) = d(y; x) (symmetry) (8)

d(x; y) + d(y; z) � d(x; z) (triangle inequality) (9)

Since quantitative data sets are usually equipped with a Minkowski metric, e.g. the euc-

lidean distance, the class of metric approaches subsumes class 1.

9.1.2 Cluster Construction (Labeling)

In many applications, the output of a clustering algorithm must include an explicit grouping

of objects into clusters. Such grouping is usually represented as a labeling function on pairs of

obiects, which takes equal values if and only if both objects belong to the same cluster.

All approaches in this survey provide such functionality, although some approaches are 
ex-

ible, in that labeling is an optional phase to be run at the end of normal processing. If labeling

is not performed, the output of the algorithm consists of some kind of numerical or graphical

summary of the data which gives insight about the clustering structure of the data.

9.1.3 Dynamic Processing

A dynamic algorithm must perform a pre{processing stage, followed by a number of update

stages [64]. The pre{processing stage reads an initial instance of the problem and computes the

initial state which will be used in the iterations and, possibly, an initial solution. An update

stage reads an update of the current instance and generates a new state and a new solution,

starting the current state.

Traditionally, clustering algorithms are static: no part of the result of a run of an algorithm

on a data set D can be used by subsequent runs on updates of D. Only recently, it has been

pointed out that dynamic clustering algorithms are useful in the following scenarios.

� Data warehousing: A data warehouse materializes views from a set of base (operational)

tables and performs on them some analytical task. Usually a data warehouse is rebuilt

during the periods of inactivity of the operational systems [67], but problem size can easily

lead to situations where the inactivity time is not suÆcient for recomputing clusters from

scratch.

� On line clustering: In some applications, the data set is extremely large and the labeling

of objects is not required. In these cases, the user may want to resort to a compromise

between accuracy of clustering and running time, making use of an on-line algorithm to

be halted when the (approximate) result is considered satisfactory.

We may classify the approaches as follows.

1. Static: No dynamic processing can be performed. Most approaches (�ve) fall into this

category.
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2. Partially dynamic: This category includes two strictly related approaches. In both, the

whole data base is not needed in advance: cluster statistics are recomputed incrementally

as objects are read from the data base.

3. Fully dynamic: The only approach in this class supports both insertions and deletions of

objects.

9.1.4 Cardinality Reduction

In knowledge discovery, one simple way to cope with the ever increasing problem size is to reduce

the cardinality of the data set to analyze, and then apply the algorithm to the reduced data set.

Of course, the problem is then to bring theoretical or experimental evidence that the results can

be extended to the entire data set accurately enough.

Among the work surveyed here, the only technique which has been employed is random

sampling. In one approach, known external memory algorithms are utilized to extract a sample

from the data set and then the proposed method is applied to the sample.

9.2 Accuracy

Authors usually validate che accuracy of clustering algorithms experimentally: Both the pro-

posed algorithm and algorithms known from the literature are run on a few synthetic and real

data sets, and the results are compared, mostly in an informal way. Very often, the data sets

used for the comparison are two-dimensional data sets containing \natural" clusters, i.e., clusters

which are perceived as such by a human observer. This is possible only in case the algorithms

to be compared are applicable to quantitative or metric data. For categorical data, either the

application example determines the perceived natural clusters, or the clustered structure of the

data set satis�es some rigourous formal de�nition of cluster assumed by the authors.

Among the clusters frequently used for comparisons, one �nds:

1. clusters with widely di�erent densities,

2. arbitrary shape clusters,

3. clusters with variable density,

4. clusters connected by thin lines of points,

5. clusters with overlapping projections,

6. clusters with hierarchical structure (clusters inside clusters).

The result of the comparison usually shows empirical subjective evidence that either the new

proposed algorithm produces one cluster for every natural cluster in the data set, whereas

algorithm in the literature aggregate or split clusters, or produce clusters having a larger overlap

with the natural clusters.

It must be noted that a formal comparative analysis of accuracy is usually impossible since

only a few works among the ones surveyed here de�ne clusters formally.

9.3 Complexity

Due to the variety of cluster de�nitions and the frequent use of heuristics, theoretical complexity

analysis alone is usually not suÆcient to measure the eÆciency of data clustering algorithms.

Therefore, most works include both theoretical complexity and experimental evaluation of the

running time.
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In some cases, comparative experiments have been conducted. However, source or compiled

code for many algorithms is not available. Therefore, some comparisons were performed using

reimplementations.

10 Survey

In this section, we will brie
y review some approaches in the literature. The methods will be

grouped according to the basic principle or technique used to cluster the data, namely:

1. Density estimation,

2. Descriptive Statistics.

10.1 Approaches based on Density Estimation

The intuition behind density based clustering is simple: Clusters are regions of the space that

are densely populated by data points. One may therefore map every data set to a function whose

value represents density at a data or space point and use it to direct the grouping of points into

clusters of the data set.

We will see that all the approaches surveyed here propose density measures which are simpli-

�ed (in fact, not normalized) versions of density estimates known from the statistical literature.

Thus, we recall a few of those estimates following [74]. For simplicity, we de�ne the estimates

assuming the real line as measurable space.

Let S = R be the measurable data space and D � S a data set of size N . Let h be a small

real number, called window width. The naive estimator si de�ned by

f̂ (x) =
jD \ (x� h; x+ h)j

2Nh
� (10)

Let K : S ! R be a function, called kernel function, such thatZ
1

�1

K(x)dx = 1: (11)

Usually K will be a symmetric probability density function. The kernel estimator with kernel

K is de�ned by

f̂ (x) =
1

Nh

NX
i=1

K(
x� xi

h
): (12)

By rank r(y; x;D) of y w.r.t. x in D we mean the number k 2 N such that exactly k�1 points
of D are closer to x than y. If y has rank k w.r.t. x, we also say y is the kth nearest neighbour of

x. The distance of the kth nearest neighbour of x from x in D is de�ned as dk(x;D) = d(x; y),

where r(y; x;D) = k. The kth nearest neighbour density estimator is de�ned by

f̂(x) =
k

2Ndk(x;D)
: (13)

10.1.1 DBSCAN

The primitive notion of the DBSCAN approach [30] is the de�nition of core point. Intuitively,

a core point is a point whose density is estimated to be higher than a given threshold.

Let � 2 (0;1), MinPts 2 N. A point x 2 D is a core point w.r.t. �, MinPts if and only if

it is the center of an �-neighbourhood containing at least MinPts other data points. A binary
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relation of direct density reachability is established between every point in the �-neighbourhood

of a core point and the core point itself. Then, the transitive closure of direct density reachability,

density reachability, or >D , is de�ned. Finally, the binary relation density connectivity is de�ned:

x; y 2 D are density connected i� there exists a point z 2 D such that x >D z and y >D z.

Finally, a cluster is de�ned as a nonempty subset such that:

1. C is closed under density connectivity,

2. any two points in C are density connected.

By de�nition, all points not belonging to any clusters are noise points. An algorithmically

convenient characterization of a cluster is given by the authors essentially as follows. If c is a

core point, the set generated by c is de�ned as Sc = fx 2 D : x density reachable from cg. It

can be proved that Sc is a cluster and that Sc equals the set generated by any core point in it.

Therefore, an expansion procedure may construct a cluster by selecting an initial core point as

seed and recursively adding reachable points until no new point can be added.

The implemented expansion procedure is passed a core point and a cluster identi�er, and

keeps in memory a queue of seeds. Iteratively, a point x is dequeued, and, if x is a core point,

a range query range(x; �) is executed. All points in the result are enqueued, with their cluster

identi�er changed to the passed parameter. When the queue is empty, the procedure returns.

The main algorithm scans the data set and calls the expansion procedure once for every core

point that is not yet classi�ed (at the time of the call).

The algorithm executes at most N range queries. Since DBSCAN has been proposed mainly

for spatial data clustering, an access method supporting range queries is usually available. In

this case, the average case I/O complexity will typically be O(jDj log jDj). (e.g. if the method
is the R�-tree and the range query region is \small".)

It is apparent that DBSCAN can be applied to metric data sets as well, provided a metric

access method is used instead of a spatial one.

Since the two parameters � and MinPts must be known a{priori, a heuristic procedure based

on nearest neighbours to derive � known MinPts is provided. However, some authors have

observed that this remains a diÆcult task.

It is easy to see that that the DBSCAN approach is based on the naive density estimator.

10.1.2 IncrementalDBSCAN

IncrementalDBSCAN [29] is a fully dynamic version of DBSCAN. The goal of this e�ort is to

propose a method which is equivalent to DBSCAN and outperforms it for a wide range of update

sizes.

The approach can be intuitively justi�ed as follows. Inserting or deleting a data point

changes the reachability relation, and consequently the clusters induced by the relation. Since

reachability is de�ned in terms of the core point property, which is a local property, it is likely

that updates can be handled without accessing the entire data set, thereby improving over the

static algorithm.

Formally, the set of points (objects) which may change their cluster membership is modeled

by the following de�nition: If x is the inserted or deleted point, the set A�ected
D
(x) of a�ected

objects of x is de�ned as the union of the �-neighbourhood of x and the set of objects density

reachable in D [ fxg from the �-neighbourhood of x. A consequence of the de�nition is that

objects not in A�ected
D
(x) induce the same generated set before and after the update (see

section 10.1.1 for the de�nition of generated set). Therefore, the new clustering could be obtained

by running DBSCAN on the set A�ected
D
(x).

It is suÆcient, however, to take a much smaller set of points as \seed" for the expansion

procedure. In fact, if c is a core object in the updated data set, then the cluster generated by c

in the updated data set is contained in A�ected
D
(x) if and only if c is density reachable by an
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object in the �-neighbourhood of x by a chain of length 2. This fact ensures that, for insertion,

only core objects directly reachable from new core objects are part of the seed, whereas, for

deletion, only core objects directly reachable from former core objects are part of the seed.

The authors derive the following theoretical formula for the speed-up factor of Increment-

alDBSCAN vs. DBSCAN:

SF =
N + finsm� fdelm

m(finsrins + fdelrdel )
; (14)

where fins , rins , fdel , rdel are the percentage and number of range queries for insertions and

deletions, respectively, and m is the size of the update. The evaluation of the algorithm on both

a large synthethic data set and a real world data set shows that the average number of range

queries is in the order of few units. In practice, the speed-up is in the order of tens even for

large numbers of daily updates.

10.1.3 DENCLUE

The DENCLUE [48] method is an attempt to satisfy two important requirements of clustering

in multimedia data bases: Noise immunity and robustness at high dimensionality.

The key idea is to construct an estimate of the overall density, �nd its modes (called density

attractors), and group points around the modes following the gradient of the estimate. Noise

points are de�ned as being exactly the points grouped with modes at which the estimate is less

than a threshold.

The density estimate is de�ned as

fD(x) =

NX
i=1

fxi(x); (15)

where fy(x) is called an in
uence function, and models the in
uence of data point y on the

density at x. In this general setting, no restriction is placed on the form of the dependency of

fy(x) from y. If fy(x) is just a function f(x) shifted to y, then the density function fD(x) can

be interpreted as a multivariate application of the kernel estimate.

As for kernel estimates, typical examples of good in
uence functions are the square wave

in
uence function:

fy(x) =

(
1; if d(x; y) � �,

0; otherwise,
(16)

and the gaussian in
uence function

fy(x) = exp(�
d(x; y)2

2�2
) (17)

where � is a parameter serving as window width (see section 10.1).

Two di�erent types of cluster are de�ned in DENCLUE, center-de�ned and arbitrary-shape.

A center-de�ned cluster is a set of data points attracted by the same density attractor, at which

density is not less than a threshold �. An arbitrary-shape cluster for a set of attractors X is

a set of data points, each attracted by some attractor in X at which density is not less than a

threshold �, with the condition that any two of attractors in X can be connected by a path all

points of which are at density not less than �.

The authors prove that the probability that density attractors do not change when the

number of noise points (i.e., uniformly distributed in the relevant portion of the data space)

goes to in�nity has limit 1. This result shows that the approach has good noise immunity.
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By choosing an appropriate in
uence function, the DENCLUE approach can be shown to

generalize other approaches. For instance, it is apparent that DBSCAN can be simulated by

choosing the square wave in
uence function. Notice however that formally DBSCAN clusters

di�er slightly from arbitrary-shape clusters. In fact, points whose density is less than � are never

included in a DBSCAN cluster, whereas they are included in an arbitrary shape cluster if their

attractor's density is not less than �.

The implemented algorithm partitions the data space into hypercubes of side 2�, assigning

a unique one-dimensional key to each. Empty cubes are discarded and the remaining keys are

stored into an access structure, such as a B+-tree. For any two cubes such that the means of

their data points are less than 4� apart, a connection between them is created to speed up the

traversal of the data space during the clustering phase. The density function is approximated by

extending summation, for computing density at x, only over points which are in cubes connected

to the cube of x, having their means at most 4� apart from x. Clustering is than performed by

following density gradient in small �nite steps, halting when density decreases.

The worst case complexity of the approach is O(jDj log jDj). However, the author claim that

the average experimental complexity is much lower, about O(log jDj).
In spite of the approximations adopted and a worst case complexity not improving over

other methods, experimental validation with a real world high dimensional data set of molecu-

lar biology with large amounts of noise shows that the implemented algorithm considerably

outperforms DBSCAN by a large margin.

10.1.4 OPTICS

In many data sets, the clustering structure is hierarchical. Thus, methods which �x a single

density threshold tend to hide nested clusters which can separated from one another only by

densities below the threshold. Moreover, the clustering will depend heavily on the threshold.

The goal of the OPTICS [8] method is to construct a robust, easy to interpret graphical

description of the data, without requiring the speci�cation of critical parameters. The actual

labeling of the data can be performed optionally. The key idea is to try to describe the hierarch-

ical clustering structure as a 2-dimensional plot (pointindex ; value). Roughly, point indices and

values are assigned in such a way that, for each cluster, there exist a distinct maximal interval

of point indices such that no internal point is a local maximum greater than any of the border

values. Hierarchical clusters are shown as nested intervals satisfying the above property.

The formal de�nition of clusters constructed by the OPTICS method is quite involved. We

will therefore describe only the method. Let dk(x) be the distance of x from its kth neighbour.

Two parameters MinPts 2 N and � 2 (0;1) are assumed. The core distance of x is de�ned as

dMinPts(x), for every x such that dMinPts(x) � �, and unde�ned otherwise. As DBSCAN, the

OPTICS algorithm is based on a set expansion procedure: At every step, a point is deleted from

the set and a range query range(x; �) is executed only if its core distance is de�ned. All points in

the query result are added to the set. The procedure ends when the queue is empty. In contrast

to DBSCAN, the set is maintained as a priority queue, where every point has a dynamically

changing real priority, called reachability distance. For point x 2 range(y; �), the reachability

distance of x w.r.t y is de�ned only if the core dist the maximum between the core distance of

y and d(x; y). When a point x is inserted as part of the result of a range query range(y; �), its

priority is set to the reachability distance w.r.t. y. If later, on deletion of another object z with

smaller priority than x, x is encountered again in the query result for z, the minimum between

the current priority and its reachability distance w.r.t. z is kept for x.

This ingenious mechanism ensures that the ordering of the points follows a steep path up

the estimated density curve to a mode, and goes to a di�erent mode only after trying to gather

as many points as possible from the cluster around the current mode. The resulting plot shows

a steep downward slope at the begininning of each cluster, when points with a small reachability
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distance are added. The plot tends to level in the cluster center, and �nally the plotted value

grow, possibly more slowly than at the beginning of the cluster (depending on the sharpness of

the cluster borders).

The de�nition of core distance implies that OPTICS is related to the kth nearest neighbour

density estimator.

10.2 Approaches based on Descriptive Statistics

10.2.1 BIRCH

The important issues of noise immunity and resource limitations were �rst addressed by the

BIRCH method [90]. Given the amount of memory available, BIRCH tries to compute the

most accurate clustering, while minimizing the number of I/Os. The complete method is quite

elaborate; we describe in the following the core of the approach, which essentially combines a

dynamic index structure with easily maintainable, synthetic descriptions of sets of points.

Any �nite vector subspace can be sinthetically described by a triple of elementary statistics,

called clustering feature (CF): Cardinality, vector sum, and sum of vector squares. Such statistics

are incrementally updatable in O(1) time whenever a new point is added to the set, and suÆcient

for computing in O(1) time the centroid of the set and various distances between the set and a

point, and scatter measures (such as set radius or diameter).

BIRCH maintains incrementally a collection of clusters. Let C be the collection computed

over a data set D and let T be a �xed threshold (a parameter of the algorithm). When a new

point x is inserted into D, if for no cluster C 2 C, the diameter of C [ fxg is less than T , then a

new cluster fxg is added to C. Otherwise x is added to the cluster that minimizes the distance

of x from C over all C 2 C. Hence the invariant maintained by BIRCH is that every cluster

diameter is less then the �xed threshold T .

To improve eÆciency, BIRCH also maintains a multiway balanced search tree entirely con-

tained in main memory, the CF-tree. Every internal node in the tree is a sequence of pairs

(CF ; p) representing the set of data points described by all its CFs. For each (CF ; p), CF de-

scribes the set represented by the node pointed to by p. In the leaves, CFs represent clusters.

The insertion of a new point is performed by following the path from the root that minimizes,

at each traversed node, a prede�ned distance between the point and the set represented by the

CF. After updating the CF, the internal nodes along the path to the leaf are updated. When

leaf capacity is exceeded, a split mechanism is triggered. If the insertion exhausts the available

memory, then the threshold T is set to T 0 > T and a new tree for T 0 is built with the leafs of

the current tree. It is proved that the new tree is always smaller, and rebuilding only requires

h extra pages of memory, where h is the height of the current tree.

10.2.2 BUBBLE

The BUBBLE method [39] extends the approach of BIRCH to clustering in arbitrary metric

spaces. The authors abstract out the structural features of BIRCH which do not depend on

vector operations and de�ne a generic framework, BIRCH�, which can be instantiated to generate

concrete clustering algorithms.

The fundamental idea the BIRCH� framework shares with BIRCH is to avoid storing sets of

points explicitly during the computation: Instead, any set of points S � D is represented impli-

citly by the value of a function CF�(S) called generalized cluster feature. To be advantageous,

a clustering feature should be:

1. much smaller than the set it represents: jCF�(S)j � jSj,

2. incrementally updatable, i.e., there exists an eÆciently computable function gCF� such

that CF�(S [ fxg) = gCF�(x;CF
�(S)),
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3. suÆcient to compute eÆciently various scatter measures and distances between sets, so

that for a measure m, there is a function gm such that gm(CF
�(S)) = m(S), and similarly

for a distance.

The algorithm maintains a multiway search tree of cluster features, iteratively reading a

point x from the data set and selecting a cluster feature in a leaf to be updated. The chosen

feature CF is such that the distance between x and CF is minimized over all cluster features,

and m(CF) � T , where m a prede�ned scatter measure and T a threshold. If no feature can

be found satisfying the threshold requirement, a new feature is initiated with point x. When

inserting x, the leaf containing the required feature can be found quickly by navigating the tree:

At every internal node the child minimizing the distance to x is chosen to continue. When

leaf capacity is exceeded, a split mechanism is triggered. Memory constraints are enforced by

increasing the threshold T and rebuilding a new smaller tree.

The features designed by the authors for metric data are based on the concept of clustroid,

which is the metric counterpart of the centroid. A clustroid of an object set S is an object x 2 S
that minimizes the sum of square distances to all other objects in S, also called the rowsum of

x. The de�nition is justi�ed by proving that the clustroid is always the object closest to the

centroid of the image of S under multidimensional scaling. The scatter measure used to verify

the threshold requirement upon insertion of x is simply the distance between x and the clustroid

of the set.

The CF for the BIRCH algorithm clearly satis�es requirements 1, 2, 3 above. However, the

clustroid fails to satisfy them, since to update the clustroid of S, all objects in S must be present

in main memory. Therefore the authors propose a heuristic strategy (the details of which we

omit due to lack of space) based on keeping only a small number of representative objects for

each leaf cluster. At any internal node, the cluster feature of an entry is a set of objects, sampled

from the set of all objects stored in the features of the entry's child.

In the BUBBLE-FM instantiation, the number of distance computations for navigating the

tree is reduced by mapping sample objects at internal nodes to Rk by FastMap, an eÆcient

implementation of incremental multidimensional scaling.

BUBBLE and BUBBLE-FM are evaluated on three data sets against cascading multidi-

mensional scaling (FastMap) and BIRCH, and are shown to compute clusters having much less

distortion (the sum of mean square errors over all clusters). Experimental time complexity both

vs. clusters and data set size is almost linear, matching thus the performance of BIRCH. Finally,

BUBBLE-FM achieves higher quality clustering on a data cleaning problem in the domain of

bibliographic data bases with respect to previous known methods from information retrieval. A

direct comparison with other metric and incremental approaches, such as DBSCAN and Incre-

mentalDBSCAN, is however missing. Although details about the test data sets are given, the

computing environment is unknown and thus it is impossible even to infer a comparison.

10.2.3 ROCK

The ROCK method [44] for clustering categorical data is motivated by the poor accuracy ex-

hibited by traditional hierarchical clustering algorithms when applied to such data.

The issue is explained by an example. In the domain of market basket analysis, the objects

to be clustered are transactions, i.e., subsets of the set of products on sale. Hierarchical methods

iteratively merge the closest pair of clusters according to a given intercluster similarity, which

is de�ned in terms of object similarity. Common de�nitions for the intercluster similarity are

the maximum/minimum/average similarity over pairs of objects (not belonging to the same

cluster).1 A popular similarity measure between sets is the Jaccard coeÆcient, de�ned as the

number of common objects divided by the number of objects in either set.

1The resulting hierarchical methods are known as single link, complete link, and group average, respectively.
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The key empirical observation is that sets of transactions may be recognized as distinct

\natural" clusters, because all transactions in each set consist only of items from a subset that

is characteristic of the set, although the characteristic subsets overlap. Unfortunately, in such

situation, the similarity between the sets may still be small under any intercluster similarity

measure, because of the in
uence exerted by transactions sharing the few items in common to

the clusters. Thus, a hierarchical algorithm may merge the clusters at an early stage.

The remedy proposed by the authors is to render object similarity more context sensitive, as

opposed to traditional similarity de�nitions which are based only on the structural properties

of the objects. To that purpose, they introduce the novel concept of link between objects.

Let s : D ! [0; 1] be a similarity measure and � 2 [0; 1] a threshold. Objects x; y 2 D
are said to be neighbours if and only if s(x; y) � �. The link between objects x; y 2 D is the

number of common neighbours to x and y. It is apparent that objects in di�erent transaction

clusters are much less likely to have high link value than high similarity. Intercluster similarity

is then de�ned as the sum of links over all pairs of objects not in the same cluster, divided by

its expectation.

Having de�ned suitable object and intercluster similarities, the algorithm follows the usual

hierarchical scheme: starting with the clustering where each cluster is a singleton, it maintains

a priority queue of cluster pairs, ordered by intercluster similarity, and merges at every step the

clusters in the queue's maximum element. The algorithm halts when the expected number of

clusters is reached.

Notice that links have to be computed for every pair of objects, resulting in superquadratic

time and and space complexity in the worst case. Therefore, the authors propose to apply the

algorithm to a sample taken from the data set by standard external memory techniques, with

linear worst case I/O complexity. Labeling is performed by selecting a fraction of objects from

each cluster and assigning an object to the cluster that maximizes the number of neighbours

among the objects selected from the cluster, divided by its expectation. Hence, labeling requires

a linear number of I/O operations and subquadratic CPU time. (The actual complexity will

depend on the size of the selection as a function of the data set size.)

10.2.4 CACTUS

Whereas dissimilarity or distance functions are used very frequently for quantitative data, such

functions are not naturally de�ned for categorical data. The CACTUS algorithm [38] discovers

clusters in categorical data without assuming or de�ning any dissimilarity or distance function.

Clusters are regions where the actual number of tuples is high when compared to its expectation,

under the assumption that attributes are independent and values are equally likely (the so-called

attribute-independence assumption).

Let the universe of attributes be A1, : : : , An and �(A1), : : : , �(An) their domains. Formally,

an interval region R is the cartesian product of exactly one subset for each of the attribute

domains: R = R1 � � � � � Rn, where Ri 2 �(Ai), i = 1; : : : ; n. To compare the expected and

actual number of tuples in a region, the authors de�ne two notions of support. The support

�D(ai; aj) of an attribute value pair (ai; aj) 2 �(Ai)��(Aj) is de�ned as the number of tuples

having value ai at Ai and aj at Aj , i.e., �D(ai; aj) = jft 2 D : t:Ai = ai ^ t:Aj = ajgj. The

support �D(R) of a region R is de�ned as jR\Dj. Under the attribute-independence assumption,

the expected supports are
jDj

j�(Ai)jj�(Aj)j
, and jDj jR1j���jRnj

j�(A1)j���j�(An)j
, respectively.

Given � 2 R, � > 1, clusters are de�ned as maximal regions where all marginal bivariate

distributions over fA1; : : : ; Ang have higher support than expected by at least a factor � every-

where in the cluster, and the support of the region is higher than expected by at least a factor

�.

The algorithm is divided into three phases: summarization, clustering, and validation. The

summarization phase computes inter-attribute and intra-attribute summaries. The former are
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the bivariate distributions on two attributes which equal the actual bivariate marginal distribu-

tions where the support is higher than expected by �, and equal zero elsewhere. The latter cap-

ture the similarity of attribute values from one attribute in the following way. If a1; a2 2 �(Ai),

then their similarity w.r.t. Aj is the number of values x 2 �(Aj), i 6= j, which have support

higher than expected by a factor � with each of a1; a2.

In the clustering phase, �rst cluster projections on one attribute are generated for all attrib-

utes, then the projections are stepwise extended to the remaining attributes: First to clusters

on two attributes, then the latter are extended to clusters on three attributes, and so on.

Cluster projections on an attribute A are computed from cluster projections on A of clusters

on two attributes (2-clusters), which in turn can be computed from summaries. Unfortunately,

the exact computation of all cluster projections of 2-clusters on one attribute is a diÆcult problem

(NP-complete). Therefore, an approximate approach is devised, which allows to compute the

clustering phase in a fraction of the time needed for summarization.

The validation phase �lters out all candidate clusters not having the required support (third

part of the de�nition above).

The authors show that the computation of inter-attribute summaries, which is the most

expensive operation in CACTUS, can be done in one scan (at most a few scans) of the data base,

for realistic values of the dimensionality, attribute cardinality and memory size. Interestingly,

I/O costs are dominated by CPU costs and therefore the di�erence between one or more scans is

negligible. Experimentally, CACTUS is shown to be more eÆcient than the STIRR algorithm2

by a factor from 3 to 10.

Indeed, the most interesting feature of the CACTUS algorithm is its ability to cluster data

in absence of a natural dissimilarity between values and tuples. Concerning eÆciency, the plots

drawn by the authors show that the time taken by CACTUS is linear w.r.t. to input size,

clustering 5 million tuples on 10 attributes in about 3 minutes. When the number of attributes

is increased, the running time rapidly grows (to the order of tens of minutes for 50 attributes).

11 Conclusions

The works reviewed in the present survey, by no means exhaustive, constitute a fairly large

body of work on data clustering. Many important issues, such as scalability, applicability under

severe limitations of computational resources, robustness in presence of large amounts noise and

clusters with a variety of di�erent structures, have been addressed by some proposal.

Up to now, little attention has been devoted to dynamic data, i.e., data which are frequently

modi�ed and, therefore, require frequent updates of the group composition. An example of this

situation is found in data warehousing. A data warehouse usually materializes views from a set

of base (operational) tables and performs on them some processing, such as clustering. Usually

a data warehouse is rebuilt during the periods of inactivity of the operational systems [67], but

problem size can easily lead to situations where the inactivity time is not suÆcient for recom-

puting clusters from scratch. A more eÆcient solution could reuse old clustering information

and consider separately new (or updated) data, obtaining new clusters from the old ones.

Another application scenario in the realm of data warehouses is approximate on-line cluster-

ing. In a growing number of application scenarios, the analysis of data warehouses is performed

concurrently by many users over data sets whose size is in the order of hundreds Megabytes. As

a consequence, severe limitations may be put on the computational resources available to every

user. This situation is further exacerbated by data mining tasks, which are intrinsically iterative.

Users of data mining services could bene�t from approximate on-line computation in two ways.

Firstly, exact answers are not always needed. For instance, the result of a clustering task might

be to put forth evidence of a clustering structure, rather than to partition explicitly the data set

2Not surveyed here.
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into clusters. Second, data mining queries returning unwanted results can be detected early and

halted. This is especially useful when utilizing clustering algorithms, which require parameters

with small stability ranges.

Techn. Data sp.str. Lab. Card.red. Dyn.proc.

BIRCH Stat. quantitative Y/N N partial

DBSCAN Dens.est. metric Y N N

DENCLUE Dens.est. quantitative Yg Y N

Incr.DBSCAN Dens.est. metric Y N full

OPTICS Dens.est. metric Y/N N N

BUBBLE Stat. metric Y N partial

ROCK Stat. categorical Y Y N

CACTUS Stat. categorical Y N N

Table 1: Classi�cation of clustering methods
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Part III

Similarity queries (Paolo Ciaccia and Marco Patella)

12 Introduction

In this Section we review the problem of approximate similarity search, proposing a classi�cation

schema able to characterize existing approaches with respect to the kind of used approximation

and on how the quality of the result is measured.

Similarity queries are a search paradigm which is pro�tably used when dealing with mining

of data. In its essence, the problem is to �nd objects which are similar, up to a given degree, to

a given query object. In this way, for example, we are able to cluster together similar objects by

executing several similarity queries [31]. In order to assess the similarity between pair of objects,

usually a notion of distance is used, being understood that low values of distance correspond

to high degrees of similarity. More formally, we are faced with the following problem: Given

a set of objects O � U drawn from a generic metric space M = (U ; d), where U is a domain

(the feature space) and d : U � U ! <+0 is a non-negative and symmetric binary function that

also satis�es the triangle inequality, retrieve the object(s) which are closest (i.e. that lead to the

lowest values of d) to a user-speci�ed query object q 2 U . Typical similarity queries include

range queries (where all the objects in O whose distance to q does not exceed a user-speci�ed

threshold � are requested) and k-nearest neighbor (k-NN) queries (where the k objects in O
which are closest to q are requested).

Several access structures have been proposed to speed up the resolution of (exact) similarity

queries: They can be broadly classi�ed (depending on their �eld of applicability) as multi-

dimensional (or spatial) and metric access methods (the former only apply when the feature

space is a vector space). Recent studies, however, pointed out the fact that using such access

structures is sometimes not very eÆcient (e.g. when the feature space is a high-dimensional

vector space [87]): In such cases, the most eÆcient way to exactly solve similarity queries is

to sequentially scan the entire data-set, comparing each object against the query object q.

Obviously, such solution is not viable for very large data-sets.

To speed-up the search it is common to o�er to the user a quality/time trade-o�: If the user

is willing to save search time, he/she has to accept a degradation in the quality of the result,

i.e. an error with respect to the exact case. Approximate similarity search, therefore, has the

goal to reduce search times for similarity queries by introducing an error in the result. Since

k-NN queries represent the most used type of similarity queries (because the user can control

the query selectivity, i.e. the cardinality of the result set), in the following we will concentrate

on this kind of queries.

12.1 Applicability Scenarios

The �eld of applicability of approximate similarity search is very wide. As an example, consider

a multimedia database, where the user can query the system to search for images similar to

a given one: Usually, such kind of search consists of several steps, each re�ning the query by

changing, through relevance feedback techniques [11], both the query object and the distance

function used to compare objects. In this light it is clear that the �rst steps of the search do

not require that an exact result is found, but only that a result can be quickly obtained that

is approximately similar to the exact result, in order to proceed with further steps as soon as

possible.

As another example, consider modern Decision Support Systems (DSSs), where complex

queries are posed to the underlying database system over Gigabytes (or even Terabytes) of data.

Such queries are expected to be computationally very expensive even if the exploratory nature
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of many DSS applications often do not require an exact answer [15]. In this scenario, users are

frequently ready to accept an approximate result if the query solution time is reduced by some

orders of magnitude.

Another common case when approximate queries arise is that of cluster-based similarity

search: In this context, the data-set is �rst divided in clusters, i.e. sets of objects sharing common

characteristics (e.g. which are similar to each other), by means of data mining techniques [54, 55];

then, at query time, the query object is compared against clusters' representatives and only

those cluster that are closest to the query are accessed to retrieve objects similar to the query

[85, 13, 59]. It is clear that such techniques cannot guarantee that the exact result is found.

13 A Classi�cation Schema

Being understood that exact similarity search is sometimes diÆcult, several approaches have

been recently proposed to solve the approximate problem. Virtually every approach proposes a

new technique and new kind of metrics to evaluate the quality of the approximate result, yet

all of them fail in relating the presented approach with other techniques presented in literature.

The goal of this Section is to present a schema able to classify existing approaches by means of

the following coordinates:

1. The type of data to which the approach can be applied.

2. The metrics introduced to quantify errors produced by approximation.

3. The guarantees in the quality of the result o�ered by the approach.

4. The degree of interaction with the user, i.e. the possibility the user has to tune the tech-

nique parameters to adapt to his/her actual needs.

The above coordinates have been chosen in order to evaluate the �eld of applicability of

existing techniques for approximate similarity search. In fact, it is understood that if a technique

A is applicable only to a subset of the data to which another technique B is applicable, then A

is less general than B. On the other hand, it could be the case that A is more eÆcient or leads

to lower errors: We are not interested in overall eÆciency or accuracy of existing techniques

here, but only on how they are achieved and how they can be measured.

13.1 Data Types

Since (exact) similarity queries require a notion of distance to be de�ned, an approximate tech-

nique is usually applied to a set of objects O � U drawn from a generic metric space M (see

Section 12). Examples of metric spaces include the D-dimensional vector space <D with the Eu-

clidean distance L2 or the set �
� of (�nite length) strings obtained from an alphabet of symbols

� with the edit distance dedit (i.e. the minimum number of symbols that have to be inserted,

deleted or substituted in order to transform a string into another).

Since, however, in most of the cases the data-set O is drawn from a vector space, several

techniques exploit this fact by explicitly referring to coordinates of the space. Of course, this

limits the applicability of such techniques, since they cannot be used on non-vectorial objects

(e.g. strings with the edit distance). Moreover, some techniques are only applicable when the

distance used to measure the (dis-)similarity between objects is an Lp metric3 or, even more

restrictive, the Euclidean distance L2.

In this light, the following classi�cation is given, in decreasing order of applicability:

3We recall that the de�nition of the Lp distance between two points x and y in a D-dimensional space is as

follows: Lp(x; y) =
�PD

i=1 jx[i]� y[i]jp
�1=p

, 1 � p <1, L1(x; y) = maxDi=1 jx[i]� y[i]j.
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MS (metric spaces) Methods in this class are applicable to the more general case of objects

drawn from a generic metric space.

VS (vector spaces) In this class fall all those techniques that explicitly use objects' coordin-

ates, thus are only applicable to vector spaces. However, these techniques do not make

any assumption on the metric used to compare vectors (thus arbitrarily chosen distance

functions can be used, e.g. quadratic form functions where the distance between vectors is

de�ned by way of a positive de�nite symmetric matrix [72]).

VSLp (vector spaces, Lp distance) Techniques belonging to this class can only be applied

when the considered objects are vectors in a D-dimensional space and the distance used to

compare them is an Lp metric (thus no correlation between coordinates is allowed). Speci�c

classes can be obtained by instantiating p (e.g. the class VSL2 contains techniques that

only applies to Euclidean spaces, i.e. when the distance used is the L2 Euclidean metric).

If p is not instantiated, then the technique is applicable to any vector space with an Lp
metric, independently of the value of p.

As examples of the above classi�cation method, we now describe three approximations tech-

niques, assigning each of them to the proper class.

Example 1

In [40] the authors propose the use of Locality-Sensitive Hashing (LSH) to transform a D-

dimensional vector x into a sequence of C bits (binary vector) v(x). Since the L1 distance

between vectors can be approximated by the Hamming (edit) distance between the corresponding

binary vectors, they propose a hashing technique to index only the binary vectors v(x). Of

course, both accuracy and eÆciency of the technique highly depend on the number C of bits

used for approximating vectors. Since the approximation for the Hamming distance only applies

to the L1 metric, this technique is of class VSL1 .

Example 2

In [86] approximate nearest neighbor search techniques based on the VA-�le [87] are presented.

Such structure, in its essence, is a sequential structure containing approximations of vectors using

a �xed number b of bits. Exact k-NN search is performed by �rst executing a sequential scan of

the structure using the query distance on vectors approximations, which yields a numberM > k

of candidate vectors, and then applying a re�nement step, where the distance is evaluated on real

vectors and only the k \best" vectors are kept. Proposed techniques suggest either to reduce the

number of considered approximations by reducing the query radius (VA-BND) or to avoid the

re�nement phase by returning only the \best" k candidate vectors, using the approximations

(VA-LOW). Since no assumption is made on the distance to be used, both techniques fall in the

VS class.

Example 3

In [42] the authors propose the P-Sphere tree, a 2-level index structure for approximate 1-NN

search. In order to �nd the nearest neighbor for the query point, the leaf node which is closest,

according to the used distance function, to the query point is accessed. The query is solved

through a simple linear scan of objects contained in such node. In this case, no assumption is

made on the query distance to be used (which, however, should be the same used to build the

tree) and no coordinates are used, thus this technique is classi�ed as MS.

13.2 Error Metrics

In this Section we review the most relevant error measures introduced to evaluate the accuracy of

approximate techniques for similarity search. From the point of view of approximation, existing

techniques can be classi�ed as follows:
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CS (changing space) To this class belong approximate methods that change the metric space,

either by changing the distance used to compare objects or by modifying the feature space,

then solve the exact problem on the so obtained approximate space. The goal is to obtain a

\simpler" exact problem. Examples of such techniques are those that approximate vectors

using a �xed number of bits, or dimensionality reduction techniques [16].

RC (reducing comparisons) Techniques in this class use the exact distance to compare ob-

jects but reduce the number of objects to be compared against the query in order to obtain

a speedup with respect to the exact search. Examples of such techniques are those that

prune from the search regions of the space according to the computation of bounds.

Of course, if we use a CS technique, the ranking of objects, i.e. the ordering of objects in

the data-set with respect to the distance to the query object, is changing with respect with the

exact case. On the other hand, using a RC technique, since the distance is not changed, the

ranking of objects with respect to the exact case changes because some results are missed.

Therefore, CS methods commonly use comparisons in ranking of objects between approx-

imate and exact results to measure the accuracy of their approximation (ranking measures),

whereas RC techniques use measures of precision/recall (i.e. how many exact results are re-

turned by the approximate query)4 or measure the di�erence in distance between the exact and

the approximate result (distance measures). Other measures include the percentage of correct

results, i.e. the percentage of times in which the approximate result is equal to the exact result.

In the following we will describe some error measures presented in literature, classifying them

by means of above categories.

Example 4

In [9] the authors propose the BBD-tree, which is a primary memory structure able to answer to

approximate k-NN queries in a time that is logarithmic in the number of objects included in the

data-set O. To reduce the number of tree cells accessed, during the search the query radius is

reduced by a factor of � with respect to the radius used for exact search. Therefore, this method

can be classi�ed as RC. The measure proposed to rate the accuracy of the proposed algorithm is

the average relative error which is de�ned as the ratio between the distance of the approximate

NN and the exact nearest neighbor with respect to the query minus 1: This measure is also used

in [20], where it is called e�ective error �eff . More formally, if we denote the query object as q,

its exact NN as nn(q), and the approximate NN as fnn(q), it is
�eff =

d(q;fnn(q))
d(q; nn(q))

� 1 (18)

Clearly, �eff is a distance measure.

Example 5

In [89] three di�erent algorithms are presented to solve approximate k-NN queries with M-tree

[21]. All of them use heuristic conditions to prematurely stop the exact k-NN search on the

tree. Thus, such methods fall in the RC class. To measure the accuracy of proposed heuristics

on k-NN queries, the relative distance error � is proposed, which is de�ned as the average �effi ,

i = 1; : : : ; k:

� =
1

k

kX
i=1

�
d(q;gnni(q))
d(q; nni(q))

� 1

�
(19)

where nni(q) and gnni(q) denote the i-th exact and approximate NN, respectively. It can be

easily proven that � � �effk .
4It has to be noted that, since we only consider k-NN queries, the number of retrieved objects (the result of

the approximate query) is equal to the number k of relevant objects (the result of the exact query), so that the

two notions of precision and recall used in Information Retrieval [71] are coincident.
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Example 6

The technique proposed in [36] combines clustering and dimensionality reduction to approximate

k-NN search. During the search, only the clusters which are closest to the query are considered

and, for all the points in such clusters, only a fraction of dimensions is used to assess the distance

to the query. To improve accuracy, the user can increase both the number of visited clusters

and the fraction of considered dimensions. This technique, therefore, combines characteristics of

both classes CS (for using only some dimensions) and RC (for looking up only in some clusters).

Example 7

The VA-LOW technique discussed in Example 2 belongs to the CS class, since the approximate

results are chosen by considering only the vector approximations. One of the metrics proposed

to measure the result quality is the normalized rank sum, i.e. the inverse of the sum of ranks in

the exact result of objects in the approximate result, computed as

nrs =
k(k + 1)

2 �
P

k

i=1 rank(gnni(q)) (20)

where the function rank(x) returns the ranking of object x in the exact result. Of course, this

is a ranking measure.

13.3 Quality Guarantees

Having determined how approximate techniques measure the result quality, it is worth consid-

ering whether each method is able to bound its performance above a predetermined level. In

other words, we are asking if an approximate technique can guarantee its error measure to be

lower than a (user-speci�ed) threshold. The classi�cation we give is as follows:

NG (no guarantees) In this class fall those methods that only use heuristic conditions to

approximate the search; thus such methods are not able to give any formal bound on the

error introduced by the approximation.

DG (deterministic guarantees) Techniques in this class are able to deterministically bound

from above the error introduced by approximation.

PG (probabilistic guarantees) Approximate methods following this approach are only able

to give probabilistic guarantees on the quality of query result. This means that, depending

on the query object, the accuracy of the result can fall below the speci�ed threshold, but,

when averaging results for several queries, the quality guarantees are met. To achieve this

goal, information about distribution of data is needed. In this light, techniques belonging

to this class can be further divided into two basic types according to how much it is known

about objects' distribution [63].

PGpar (probabilistic guarantees, parametric) Approaches in the parametric class as-

sume that the used data-set follows a certain distribution; the only unknown informa-

tion concerns a few parameters that need to be estimated (e.g. through sampling). Of

course, when the considered objects do not follow the modeled distribution, quality

guarantees cannot be met.

PGnpar (probabilistic guarantees, non-parametric) In this case, little assumptions

(or no assumption at all) are made on distribution of objects, so that such information

has to be estimated through sampling and stored in a suitable way (e.g. through

histograms).
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Example 8

The third technique proposed in [89] (see also Example 5) stops the k-NN search whenever the

improvement in the distance between the query and its k-th NN falls below a threshold �. In

this case, however, no guarantee can be given on the accuracy of the approximate result, de�ned,

for example, through the relative distance error � de�ned by Equation 19. Thus, this method is

in the NG class.

Example 9

The algorithm for approximate search proposed for BBD-trees in [9] (see also Example 4), and

the �rst technique proposed in [89] both use a value � to reduce the query radius during the

search. In both cases, it is guaranteed that �eff � �, thus both techniques belong to class DG.

Example 10

In [13] the DBIN structure is proposed as a 2-level index for solving the k-NN problem. The

method assume that the data-set is composed of K clusters, and that distribution of objects

within each cluster can be modeled by way of a Gaussian distribution, parameterized by a mean

vector and a covariance matrix. At query time, the cluster that best �ts the query object is

found, and the NN is computed by considering objects in that cluster. Then, remaining clusters

are accessed i� the probability that the NN has not been found yet is higher than a user-speci�ed

threshold. Such probability is computed by relying on the assumption of a Gaussian model, with

parameters estimated at index construction time. Since the correct NN is found only with high

probability and a Gaussian distribution is assumed (where mean and covariance have to be

estimated), this method is in the PGpar class.

Example 11

The PAC technique proposed in [20] is a paradigm for approximate 1-NN search with metric

access methods, where the e�ective error �eff measure (Equation 18) is allowed to exceed the

user-speci�ed accuracy threshold � with a probability limited by the user-speci�ed con�dence

Æ. To guarantee this, the distance between the query objects and its NN is estimated from the

distance distribution [22] of indexed objects. Since this latter information is not known at query

time, such distribution is estimated (through sampling) and stored (in a histogram). By above

considerations, this technique can be classi�ed in the PGnpar class.

13.4 User Interaction

The last classi�cation we propose relates to the possibility given to the user to specify, at query

time, the parameters for the search (e.g. the maximum error allowed). Some techniques, in fact,

are inherently static, in the sense that a structure is built by using a set of parameters to o�er

some guarantees: If the user wants to change, for example, the accuracy of the result, he/she

has to modify the value of the parameters and to rebuild the structure from scratch. Other

methods, on the other hand, exploit a single structure that is not bound to any parameter and

can be used with di�erent sets of parameters, according to user's needs.

SA (static approach) When using a technique in this class, the user cannot vary the set

of parameters for query approximation, but is bound to those speci�ed when building

the approximate structure. Usually, to provide several quality of result pro�les, di�erent

structures are built, using di�erent sets of parameters, and the user is given the possibility

to choose the structure that best �ts his/her actual needs.

IA (interactive approach) Methods in this class are not bound to a speci�c set of paramet-

ers, but can be interactively used by varying such parameters at query time. Usually,

interactive techniques are obtained as modi�cations of the exact similarity search method,

that can be executed by requesting a maximum error of 0%.
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Example 12

In the P-Sphere technique presented in [42] (see also Example 3), the size of leaf nodes, i.e.

the number of objects in each data page, is estimated by taking into account a user-speci�ed

accuracy. Of course, if the accuracy parameter is changed, the P-Sphere tree has to be rebuilt

from scratch. Therefore, this method is static and belongs to the SA class.

Example 13

In [47] the authors propose the generalized NN search as a new approach for high-dimensional

NN search. The key idea here is to �nd a suitable projection to reduce the space dimensionality;

then, the NN search is performed on the reduced space using the original distance function and

projected points. Of course, the higher the value of the dimensionality D0 of the reduced space,

the better accuracy is obtained by this technique. Since the user can specify, at query time, the

value of D0, this method can be classi�ed as IA.

14 Some Relevant Cases

In this Section we use the schema introduced in Section 13 to classify some of the approaches

for approximate similarity search presented in recent years. For each method presented in

the following Sections, the classi�cation is expressed as a 4-tuple consisting of the following

\coordinates": (< data type >;< error metric >;< quality guarantee >;< user interaction >).

14.1 Fastmap [34]: (MS;CS;NG;SA)

The Fastmap technique [34] has been proposed as a tool for mining and visualization of metric

data-sets. In its essence, the Fastmap algorithm is able to map a set of objects drawn from a

generic metric space to a D0-dimensional Euclidean space, where D0 is a user-speci�ed value,

such that distances between objects are preserved as much as possible. Of course, this approach

can also be used for approximate searching, since performing a similarity search in the target

D0-dimensional space can be viewed as an approximate search in the original metric space. Since

the method applies to general metric spaces, it belongs to the MS class; the transformation of

the space is re
ected in a transformation of the distance used to compare objects, thus this

technique is in the CS class; in the paper, the authors give no guarantee on the error introduced

for distance in the target space,5 hence the quality guarantee class is NG; �nally, as for user

interaction, the mapping in the D0-dimensional space has to be made before any index structure

is built on the transformed objects, thus Fastmap falls in the SA class.

14.2 DBIN [13]: (VS;RC;PGpar; IA)

The DBIN (density based indexing) method was presented in [13] as an approach to solve

approximate similarity queries in high-dimensional spaces. The base assumption is that the

distribution of objects in the space can be modeled as a mixture of Gaussian distributions.

Each point, therefore, can be associated to a cluster, parametrized with a mean vector and a

covariance matrix, by using an expectation-maximization algorithm. When searching for the

NN of a query point, the clusters obtained in the building phase are ranked according to the

probability that the query point belongs to them; then, each cluster is accessed (and points in

that cluster compared to the query) until the probability that the NN has not been found falls

below an user-speci�ed tolerance. Since no assumption is made on the distance used to compare

vectors (even if analytical results are given only in the case of quadratic form distance functions),

this method falls in class VS; the distance used to compare vectors is the exact distance, thus

5The error between exact distances and distances between transformed objects can be limited, for the relevant

case of vector spaces, by exploiting the Johnson-Lindenstrauss lemma. However, for the general case of metric

spaces, no general rule has been proposed so far.
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the class of this technique is RC; as for quality guarantees, this technique assumes that indexed

objects are distributed in clusters according to a Gaussian distribution, for which the mean and

the covariance are estimated in the building phase, hence this method belongs to class PGpar;

since the user can specify the tolerance parameter, used when stopping the search, this method

is of class IA. Finally, the metric used to measure quality of the result is the percentage of times

the exact NN has been found (this is a precision/recall measure).

14.3 PAC [20]: (MS;RC;PGnpar; IA)

PAC (probably approximately correct) nearest neighbor queries, introduced in [20], represent a

probabilistic approach to approximate 1-NN search in metric spaces, where the error in the result

can exceed a speci�ed accuracy threshold � with a probability that is limited by a con�dence

parameter Æ. The PAC paradigm can be applied to any distance-based (either multi-dimensional

or metric) index tree that is based on a recursive and conservative decomposition of the space

(thus it is of MS class). The only information that is needed by the algorithm to prune index

nodes from the search is the value of r
q

Æ
, the maximum value of distance from the query object

q for which the probability that the exact NN of q has a distance lower than d is not greater

than Æ:

r
q

Æ
= supfrjPrfd(q; nn(q)) � rg � Æg (21)

In the paper, this value is estimated by using the distance distribution of indexed objects with

respect to the query object (estimated through sampling and stored as an histogram); it is

therefore clear that this approach is probabilistic and non parametric (PGnpar class). The

distance used to query the distance-based index structure is the exact one, the approximation

is introduced by reducing the number of object to be compared against the query object q by

means of r
q

Æ
and of the � parameter, and quality of the result is measured by the e�ective error

�eff de�ned by Equation 18, thus the class of this approach is RC; �nally, since the accuracy and

the con�dence parameters (� and Æ, respectively) can be speci�ed at query time, this technique

belongs to the IA class.

14.4 VA-BND [86]: (VS;RC;PGnpar; IA)

In [86] two approximate query evaluation techniques are presented for the VA-File. The VA-File

structure [87] approximates vectors using a �xed number of bits, and stores such approximations

in a �le. For exact k-NN search, the approximation �le is sequentially scanned to exclude vectors

that can not be in the result set through the computation of bounds on exact distances (such

scan is very fast since the computation of bounds between approximations has to consider only

a few bits); �nally, exact vectors corresponding to approximations included in the result of the

previous scan (the candidate vectors) are compared against the query point to compute the

�nal result. Since the approximations of the VA-File are only applicable to vector spaces and

any distance can be used to compare vectors (even if computation of bounds can be a diÆcult

task if complex metrics are used), all approximate techniques developed for this structure fall

in the VS class. In the paper, two di�erent metrics are proposed to measure the accuracy of

approximate techniques:

1. The ratio of false dismissals rfd, de�ned as

rfd =
1

k
�

kX
i=1

(
1 if rank(gnni(q)) > k

0 otherwise
(22)

which counts the number of exact results not included in the approximate result (divided

by k). This can be classi�ed as a precision/recall measure and it is the same measure used

in [13] (see Section 14.2), where it is called discounted accuracy.

34



2. The normalized rank sum nrs, de�ned by Equation 20, is computed as the inverse of the

sum of rankings in the exact result of objects in the approximate result, normalized in

order to obtain a value in the interval [0; 1]. This is a ranking measure and it is used to

better distinguish the quality of result with respect to the above measure.

The �rst approach to reduce the complexity of similarity searching in the VA-File through

approximation proposes to adapt the computation of distance between approximate vectors.

The user is given the possibility to specify a value � to adapt computed bounds: Higher values

of � correspond to higher errors in the result but the candidate set will consist in a lower number

of vectors. Since the approximation is introduced in the computation of bounds and not on the

exact distance, this technique can be classi�ed as RC. The number of vectors missed can be

computed as a function of the distance distribution between objects, thus this technique can

give probabilistic guarantees on the ratio of false dismissals rfd as a function of the parameter

�; therefore, the class for this method is PGnpar. Finally, since the parameter � can be speci�ed

at query time, the VA-BND technique is in class IA.

14.5 VA-LOW [86]: (VS;CS;DG;SA)

The second approximate technique for the VA-�le (also presented in [86]) proposes to completely

omit the second re�nement phase and to return, as the approximate result, the k vectors cor-

responding to the best approximations. Of course, in this case, the approximation in the result

comes from using, in computing the distance, the approximate vectors instead of the exact vec-

tors, thus this method can be classi�ed as CS. The error in computation of the distance on

approximate vectors can be controlled by means of the quantity of bits used for the approxima-

tions: The more bits are used, the better the approximation but the slower the �rst sequential

phase. Since a bound on the error between the distance on approximate vectors and the exact

distance can be easily computed, this technique falls in the DG class. As for the interaction

with the user, it is clear that the only parameter used, i.e. the number of bits used for vectors'

approximation, has to be speci�ed before the actual VA-File is built, so that the class for this

technique is SA.

15 Comments and Extensions

We believe that the proposed classi�cation schema can be very fruitful for the analysis of ap-

proximate techniques for similarity search. By using such schema interesting relations and

similarities between techniques can be found that may not be evident at a �rst sight. As an

example, consider the PAC approach (reviewed in Section 14.3) and the VA-BND technique

(Section 14.4): Both are classi�ed as belonging to the RC, PGnpar, and IA classes, the only

di�erence being in the fact that the VA-File only applies to vector spaces. Indeed, at a closer

look, these two method share several analogies:

� In both cases the approach requests for an additional con�dence parameter (Æ and �,

respectively) representing the quality of the result the user is willing to obtain. The lower

the value of the parameter, the lower the error and the higher the search costs.

� Both methods use information about the distance distribution in order to estimate the

distance between the query object and its nearest neighbor.

� In both cases the distance distribution and the con�dence parameter are jointly used to

derive bounds to stop the search.

� Di�erent error metrics are proposed for the two methods, but estimates on other metrics

can be easily obtained (e.g. on rfd and nrs for PAC, and on �eff for VA-BND).

35



It is clear that, by using the proposed classi�cation schema, we are able to immediately

understand the �eld of applicability of a particular approximate technique. In this way, we

can conceive whether, for example, a method is more general, i.e. it applies to a superset of

scenarios, with respect to another, or how its quality measures relate to those proposed for

other techniques. In search for the \best" approximate technique for a speci�c scenario at hand,

in fact, di�erent aspects are to be considered, in particular the generality/eÆciency trade-o�: A

more general method is expected to have a lower eÆciency (i.e. to lead to higher search costs)

than a method that applies to a lower number of cases, since it is expected that the latter is able

to exploit some domain-speci�c information that the former cannot to take into account; this

applies immediately when considering methods that apply to metric spaces or only to vector

spaces. The same considerations can be made when dealing with quality guarantees: Parametric

approaches usually attain better performance with respect to non-parametric ones, yet they

are only applicable to particular distributions of objects. On the other hand, deterministic

techniques, in some senses, are the most general ones, since guarantees are met in all possible

cases and not only in a probabilistic way. Finally, it is clear that interactive approaches are

more general than static ones, since the user is given the possibility to choose at query time

the desired quality of the result, which is inversely related to search costs needed to obtain the

approximate result.

Limits of approximate techniques can also be discovered by means of the proposed classi�c-

ation schema. As an example, consider the PAC technique reviewed in Section 14.3: Since only

the distance between the query object and its nearest neighbor is estimated, it is clear that such

approach cannot deal with approximate k-NN queries when k > 1. In order to extend the PAC

approach to generic k-NN queries, we need to estimate the distance between the query object

and its k-th nearest neighbor, e.g. by using formulas from [22].

Finally, we would like to point out some issues that are currently open for research. In our

view, the most pressing one is that of extending approximate similarity techniques to deal with

the case of complex queries, where di�erent similarity predicates are jointly evaluated to derive

the similarity between the object and the query [33, 23]. In the simplest case, all the similarity

predicates refer to a single feature, thus, for example, we could ask for the objects which are most

similar to a query object q1 and to a query object q2: In this case, the overall similarity score for

an object O 2 U is obtained by computing the similarity between O and q1, and that between O

and q2, and combining them through a scoring function [33]. In order to solve complex queries,

some existing approaches suggest to independently solve the two sub-queries, i.e. to consider

objects that are suÆciently close to q1 or to q2, and then to combine the so-obtained results

[33, 45, 88], whereas other techniques are able to consider the complex query as a whole and

to process it with classical distance-based access methods [23]. The former approach is usually

much less eÆcient than the latter, since a lot of work is wasted during the �rst phase to consider

objects that are not contained in the �nal result (for a comparison, see [23]). Besides speci�c

problems, however, it is clear that this kind of similarity search is a�ected by the same problems

that limit (simple) similarity search, thus one could conceive approximate techniques applying to

complex similarity queries. By our knowledge, no previous work dealt with such issue, probably

because of the preliminary state for approximate techniques for simple similarity search. We

plan to investigate this issue in the future.

36



Part IV

Visualization (Tiziana Catarci)

16 Introduction

Various data visualization modalities, together with other techniques speci�cally oriented to the

discovery of correlation or rules, are often used in data mining systems. These visualization

modalities are often used to support other techniques, essentially to visualize database results.

Furthermore, the availability of di�erent visualizations allows the user to discover new proper-

ties, their correlation and �nd any unexpected values. The user may apply other data mining

techniques for further analysis of such \unusual", or rather interesting data.

Thanks to the use of animation, some recent systems (such as MineSet [43] of Silicon Graph-

ics) allow the user to \
y over" data to see multiple levels of detail. The advantage of using

data visualization technique is that the user need not know the type of phenomena to observe

in order to notice something unusual or interesting. For example, through statistic tests the

analyst must formulate precise queries, as \do the data evaluate this condition?" or \are these

values consistent with the distribution of Poisson?" No statistic test can answer questions such

as \is there something unusual in this data set?" Also, the use of interactive visualization tech-

niques allow the user to quickly and easily change the type of visualized information, just as the

particular method used (that is moving from histograms to scatterplots or parallel coordinates).

However, one limit of existing systems is the absence of a global interaction environment.

In other words, what is missing is a complete data-mining oriented visual metaphor, which

supports both the phase of de�nition of the speci�c operations that are to be applied to the

data and the analysis of the end results. The aspects of more interest to the existing systems are

on the contrary relative to the application, more or less sophisticated, of speci�c visualization

techniques of data traditionally proposed in literature [75, 82, 69], which essentially focus on the

visualization of histograms and other diagrams typically used to represent quantitative data,

tridimentional and otherwise, cluster of points, distribution of points, cluster relations, maps,

again in two or three dimensions.

Visualization was initially used for data mining by the military, to analyze submarine acoustic

data, and also in the petrochemical sector, to analyze the course of seismic prospects. However,

the visual analysis of data may be applied in di�erent applicative sectors. For example, in medical

research it may be applied to identify factors that characterize patients with a particular disease,

or in chemical analysis for the discovery of new compounds, or in the �nancial sector for the

discovery of how data on warehouse goods are related.

In the following relevant characteristics of a set of notable systems are discussed. Such

systems are divided into two categories: systems in which visualization is a basic technique,

associated to a limited number of functionalities and other mining techniques, and more complex

systems which provide the user with a complete set of algorithms and tools.

17 Data Visualization based Systems

Data characteristics that are very diÆcult to understand analyzing a certain number of lines

and columns in the database may become obvious when visualized through drawings. The

following systems belong to this category: AVS/Express [80], CrossGraphs [51], Data Desk [25],

Datascope [61], DEVise [62], ADVIZOR/200 [52], Descartes [41], JWAVE [68], Spot�re [6],

Open Visualization Data Explorer [50] and VisualMine [76]. All these systems use statistical

data analysis techniques, 2D and 3D visualization and various diagrams which better highlight

the data characteristics. Few systems support advanced functionalities such as multidimensional

data visualization, typical of On-Line Analytical Processing (OLAP) systems - animation or the

37



use of special visual tools to query the database (�lters of dynamic queries [1, 81]). The use of

Web technology is more widespread whereas integration of di�erent systems is limited. Unix

and PC platforms are almost equally distributed among the various systems (see Table 2).

System property AVS

Expr

Cross-

graphs

Data

Desk

Data

Scope

DEVise ADVIS-

OR

2000

Descar-

tes

JWave Spot-

�re

Vis

DX

Visual

Mine

Statistical Ana-

lysis

x x x x x x x x x x x

2D and 3D im-

ages

x x x x x x x x x x x

Graph Based x x x x x x x x x x x

Animation x - - - - x - x x x ?

Dynamic query

�lters

- - - x - - x - x - -

Developed for in-

ternet/intranet

x - - - - - x x x - -

Presence of API x - - - - - - - - - -

Access to data

source

x - x x x x - x x x x

ODBC x - - x - x - - x - x

Integration with

other systems

- - - - - - - - x x x

Platforms

- Unix x x - - x - x x - x x

- PC x x x x - x x x x - x

- Mac - - x - - - x x - - -

Table 2: Key Features of DM Systems based on Visualization

AVS/Express

Description: AVS/Express allows users from various scienti�c, technical and trade sectors to use

functionalities for visualization, data analysis and image processing. AVS includes traditional

visualization tools as 2D designs, various types of diagrams, image processing and advanced

tools that allow interactive rendering and 3D image visualization, through systems such as SGI

Realty or CAVE. Simply click a certain point on the screen to view data during exploration.

The system allows import and export of data in TIFF, JPEG, GIF, SGI, SUN, BMP, PBM

and NetCDF formats; it also allows output in AVI, MPEG and VRML, giving the possibility

to publish the results of the analysis directly on the World Wide Web. Currently the user may

choose between two types of software: AVS/Express Multipip e Edition and AVS/Express Visu-

alization Edition. The former concentrates on the 3D aspect and is intended to help understand

data by using new interaction methods such as virtual reality. The latter, on the other hand,

includes a subset of Express visualization modules (data visualization and processing), apart

from the possibility of merging existing modules in C/C++.

Platforms : Windows 98/NT, Digital, HP, IBM, Silicon Graphics, Sun.

Producer : Advanced Visual Systems

ADVIZOR/2000

Description: ADVIZOR/2000 was intended to help users understand their data and render the

study much faster by using visualization techniques. It was introduced as a program strictly

linked to Microsoft Excel. The key feature of ADVIZOR is its ability to simplify visualization and

understanding of multidimensional relations. To obtain this, metaphors and visual perspectives

are used to maximize the user's ability in studying his/her data.

Platforms : Windows 95/98/NT

Producer : Visual Insights

CrossGraphs

Description: CrossGraphs is a clinical data visualization program that uses statistical graphs

and cross-charts to help discover relations between data and compare the paths of many data

subsets. CrossGraph provides more than a dozen graphical components for better visualizing
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data relations. It is also possible to develop new ones. In fact, by using Customization Option,

CrossGraph may be used as a powerful graphical library exploited by other programs through

OLE. In addition, it is possible to export the produced drawings in Word documents or Power-

Point presentations, or import data from Excel electronic sheets. CrossGraph may be used

interactively as data visualization and exploration tool or in batch modality to produce high

quality reports for o�-line analysis.

Platforms : Windows 95/98/NT, HP, Sun.

Producer : PPD Informatics

Data Desk

Description: Data Desk is a fast and easy to use software that helps people to understand their

data. It is equipped with interactive tools used for visualizing and analyzing data, based on

the concepts and philosophy of \Exploratory Data Analysis". Data Desk employs many of the

traditional statistical and graphical techniques to discover the structure of a data set. Special

colors and symbols in the diagrams can easily highlight cluster and abnormal points; sliders may

be used for dynamic data analysis; Graphics (2D and 3D) and the derived tables are linked such

that points selected in a graphic design can be highlighted in all the others.

Platforms : Mac and Windows 98/NT.

Producer : Data Description

DataScope

Description: DataScope provides solutions in various sectors including banking, �nance, insur-

ance and telecommunication. Among the peculiar characteristics of DataScope is the ability to

query a database without using an actual query language. In fact, no formula or command is

required for a query, using the mouse is enough. Basically the system uses statistical diagrams

for non-numerical data, whereas just one visualization method based on empirical distribution

diagrams is used for numerical data. DataScope classi�es database �elds in three categories:

� Identi�er Fields: This category helps to identify records. An identi�er �eld is normally a

name or another unique identi�er (ID).

� Numerical Fields: These �elds contain quantity such as population age, price, etc. Data-

Scope is also able to process numerical �elds where data is not available for all records.

� Discrete Fields: In this category, the �elds have only little di�erent values that are used

for classi�cation of records rather than quantitative analysis. Some examples are �elds

that contain type identi�ers, yes/no answers, etc.

DataScope can use up to 16 di�erent windows to visualize the database content. Each

window represents one or two database �elds; in this way various alternatives can be analyzed,

using 16 di�erent �elds or pairs of �elds. All windows are connected to each other so as to

display all information concerning currently selected record. The visualization mode depends

on the �eld category. Identi�er �elds are viewed in a list form. Numerical �elds are presented

according to their empirical distribution function. The value given by this function for a selected

data is a number between 0 and 100. The percentage indicates the position of the selected data

in respect of others and as such it is very easy to examine a value in relation to another. Lastly,

discrete �elds are visualized as traditional graphics i.e. pie chart or bar chart. The chart shows

the category (or the class) to which the selected record belongs. Relational diagrams may be

used to visualize information on the relationships between two numerical �elds. These diagrams

are useful when trend is evaluated and when searching for unusual characteristics. Di�erent

relational diagrams can be visualized.
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DataScope allows access to every type of database thanks to the use of the ODBC connecting

library.

There are two versions of the program:

� DataScope Professional, which uses two modular components:

{ Explorer - Visualization and Decision Support.

{ Predictor - Prediction and Data Mining.

� DataScope Power, which, apart from the two modular components, uses:

{ Scheduler - Automate the Data Mining Process

{ Datamap - Import from Relational Databases

Platforms: Windows 95/98/ME/2000/NT.

Producer: Cygron Research & Development, Ltd.

Figure 8: Datascope Architecture

DEVise

Description: DEVise (Data Exploration and Visualization) is a data exploration system that

allows the user to develop and easily visualize huge databases (possibly containing, or connected

indirectly to, multi-media objects) from di�erent data sources. The importance of this system

has been in the development of powerful, but intuitive, data visualization and primitive query

constructs. The main characteristics of DEVise are therefore the visual query interface, whose

constructs may be memorized and reproduced on other data sets; the e�ective management of

huge databases and the ability to query records using visual constructs. The system allows the

import of ASCII data only. Furthermore, most of the DEVise functions are obtainable from

Internet using Java DEVise Java Screen.

Platforms : Unix system

Inventors : Miron Livny, Raghu Ramakrishnam and Kent Wenger.

Descartes (IRIS)

Description: Descartes is a research prototype that supports space data visual analysis for Geo-

graphic Information Space applications (GIS). Descartes automatically produces high quality

thematic maps for statistical data selected by the user. The system applies a general knowledge

on the best combination and representation of the data on the maps, using heuristic rules to-

gether with speci�c metadata of the application and an object-oriented knowledge representation
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Figure 9: DEVise JavaScreen

language. Contrary to other GIS systems, Descartes completely automates the production of

these maps, allowing the user to concentrate on the data analysis rather than the cartographic

design. Also, because information and access are key elements of geographical information,

Descartes has a module called writeHTML, which generates HTML pages directly from data-

base records. This way, the user can simply click and make available his/her information on an

intranet or Internet network. Descartes is in two forms: as a single program using Windows

95/98/NT or as an application based on Java applets.

Inventors : Nathalia V. and Gennady L. Andrienko

JWAVE

Description: JWAVE is a component of PVWAVE Web Development Environment, and visual

data analysis software that integrates advanced (2D and 3D) graphics, statistical and numerical

functions with very 
exible access to data, assisted by a RAD (Rapid Application Development)

environment. JWAVE has a multi-layer architecture: the JWAVE client, the JWAVE server

and PVWAVE. The JWAVE client comprises a system of classes and Java applets for the client

interface. On the other hand, the JWAVE server acts as a Unix or NT service that forwards the

client requests to PVWAVE.

Platforms : Windows 95/98/NT, Digital, HP, Sun, Open VMS, NeXTStep, Convex, Data Gen-

eral.

Producer : Visual Numerics, Inc.

Spot�re

Description: Spot�re is a tool used for the analysis and visual exploration of huge databases,

strictly connected to an advanced query language. Thanks to the dynamic techniques of inter-

active and animated visualization, Spot�re allows the user, who has no knowledge of statistics,

to access thousands of database objects and notice certain trends, paths or anomalies among

the data. Just click an object to �nd the desired details, including multi-media data. Colors,

icons, advanced animation, 2D and 3D computer graphics can be used for this purpose. Tables

generated with normal electronic pages, containing numeric and text data, can be visualized

and explored in Spot�re with minimum e�ort. The application of Spot�re to real life situ-

ations is quite signi�cant. For example, it is possible to interactively visualize telephone calls or
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study environmental data of a certain region or analyze �nancial and commercial data, and so

forth. Spot�re imports data from data warehouses, text �les and electronic sheets (supported

by ODBC), and creates a visual data mining environment for the user. At any time it is possible

to obtain information concerning an object (also multi-media) visualized in the form of a dot

on th screen, by clicking on it. Visualization is 
exible and it is possible to capitalize on the

colors and icons in the discovery of hidden paths, clusters or isolated data. Spot�re appears

with a main window divided into various areas. The selected records are visualized on the left

side of the screen. A query tool (sliderbar, alphaslider, ...) for each column of imported table

is visualized on the upper right side of the screen. These tools are used to choose a subset of

values in a column, so as to select a certain number of rows. Interacting with the tools, the

visualization of the data updates automatically to re
ect the changes. Lastly, the lower right

side of the screen could be used to visualize details, upon request. By just selecting a certain

point in the visualization window, the desired detail information on a database object (typically

a record), would appear in a complete form.

Platforms : server: Windows NT; client: Windows 95/98/2000/NT

Producer : IVEE Development AB.

OpenVisualizationDataExplorer (DX)

Description: Open Visualization Data Explorer is a general-purpose software for visualization

and analysis of mainly scienti�c data, especially 3D data originating from simulation. The

architecture of the system is based on a client-server model; the client hosts the user's graphics

interface, which uses Xwindows and Motif, whereas the server e�ects all necessary computation.

DX provides an extensive library of modules, so the user composes her/his programs to render

the image, choosing and connecting these modules by means of a visual programming editor.

DX is similar to a GIS system, but it further o�ers the possibility to investigate huge quantity

of data. DX supports large number of data sets and works simultaneously with many types of

data.

Platforms : Sun, IBM, DEC, Data General.

Producer : IBM.

VisualMine

Description: VisualMine (Visual Data Mining Environment) is based on an advanced 3D-

visualization technology. After loaded data from the database, the user employs the Mapping

Window module to select which type of visual metaphor s/he intends to use. Data are then con-

verted into graphics. Clusters, anomalies and relationships inside huge data sets are emphasized

through the 3D representation. Moreover, it is also possible to represent geographic data, as

maps, in various levels of detail. It is worth noting that VisualMine supports access to Oracle,

Informix and Sybase databases through the SQL language, while through ODBC it allows one to

access dBase, FoxPro, Access and Excel �les. Furthermore, by means of the new API libraries,

users of VisualMine can work jointly with other data-mining products. In particular, the last

versions of the product support a full integration with Clementine (see next section). Lastly, the

latest of the product is the introduction of VisualMine Wizard, which allows users to perform

data mining activities in a semi-automatic manner.

Platforms : Workstation Unix and Windows 95 and beyond or NT

Producer : Arti�cial Intelligence Software.

18 Multistrategy Systems

This section refers to tools that adopt diverse data mining techniques, from neural network to

data visualization, making provision for a more e�ective search of paths and rules within large

42



databases. These systems basically operate in the Unix environment, since they exploit the

power of parallel architectures to analize the available data with several techniques (see Table

3).

System properties Clementine Decision Series Intelligent Miner Mine Set

Neural Networks x x x x

Decision Trees - - x x

Induction Rules x x x x

Discovery of

Rules

- x x x

Data Visualiza-

tion

x x x x

Use of Induction

Properties of Al-

gorithms

- - - -

Export of Rules

in Prolog, SQL or

others

x - - -

Developed for in-

ternet/intranet

- - - -

API x - x -

Access to other

sources

- Data x x x x

- ODBC - - - -

Integration with

other systems

x x x x

Programs

- Unix x x x x

- PC (Windows) - - - -

- Mac - - - -

Table 3: Key Features of Multistrategy Systems

As shown in Table 3 the following systems fall within this category: Clementine [60], Decision

Series [77], Intelligent Miner [49], KnowledgeSTUDIO [53], and MineSet [43].

Clementine

Description: Clementine is based on a visual programming interface and it supports every aspect

of data mining, from data access (Oracle, Ingres, electronic sheets, etc...), to manipulation

utilizing diverse data mining techniques. Clementine is completely based on the CRISP-DM

data mining model. CRISP-DM is a project �nanced by the European Commission, to de�ne a

standard approach to data mining projects. The objective of the project is to de�ne and validate

a general method independent of the type of business. This approach renders the implementation

of large data mining applications faster, more eÆcient and less costly. The system analysis driver

is based on machine learning algorithms as neural networks and induction of rules, the creation

of graphs, cluster methods and regression. Moreover, with Clementine Solution Publisher it

is possible to distribute data mining results, thanks also to the possibility of automatically

generating Ansi C standard code. Clementine is an open system and can be entirely con�gured

by the user; in fact it has a development library.

Platforms : Sun, HP, Silicon Graphics, DEC, VAX/VMS.
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Producer : Integral Solutions Ltd.

Figure 10: CRISP Approach

Decision Series

Description: Decision Series is a set of integrated tools for the discovery of rules. It uses neural

nets (DecisionNet) in learning to identify paths from training examples, using backpropagation

as analysis algorithm. To cluster information which are similar according to certain metrics.

Decision Series uses DecisonCluster and DecisionKmeans modules. The clusters could be estab-

lished a priori or determined by the system itself. Finally, within the system there is a module

for the search of association rules and time-series (DecisionAR). Using the DecisionAccess inter-

face, Decision Series may interface its environment with several relational DBMS (e.g., Informix,

Oracle, Sybase, Teradata) and report tools (e.g., BusinessObjects).

Platforms : Unix systems

Producer : NeoVista Solutions, Inc.

Intelligent Miner

Description: the IBM Intelligent Miner groups diverse data mining techniques in one tool, which

works in client-server modality. It is capable of creating classi�cation models and prediction by

using decision trees and neural networks. Furthermore, it uses rules discovery techniques, such

as associations and series, and data visualization functionalities. It can also access various data

sources, such as Oracle, Sybase and DB2 for OS/390. The results of the analysis are recorded

in DB2 tables. The system is also provided with programming libraries.

Platforms : AIX, OS/390, OS/400, Solaris and Windows 2000/NT.

Producer : IBM

KnowledgeSTUDIO

Description: Thanks to an intuitive interface, KnowledgeSTUDIO simpli�es and streamlines

several data-mining problems. It can import data from many statistical tools, such as dBase,

Excel, SPSS, SAS. Alternatively, the data could be extracted in a native format and analyzed

by a dedicated server (KnowledgeSERVER), optimized for mining. KnowledgeSTUDIO o�ers

diverse mining techniques: �ve di�erent algorithms for decision trees, �ve for neural networks
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and clustering. There is also the possibility to include customized algorithms through the Know-

ledgeSTUDIO Algorithm Development Kit (ADK). The system provides a simple way of dividing

the data into a number of equivalent partitions known as "stati�ed samples", which contain the

types of records speci�ed by the user, to train the neural networks or another predictive model.

Using VisualBasic, PowerBuilder, Delphi, C++ or Java, other data mining methods can be

included in the analysis. KnowledgeSTUDIO is capable of constructing decision trees automat-

ically or interactively. Rules obtained in this manner can be expressed in pseudo-code, SQL or

Java. Conversely, cluster-based analyses can be used to identify groups of interest. Lastly, neural

networks can be simply created through a wizard; KnowledgeSTUDIO uses ad-hoc algorithms,

instead of Backpropagation, by which it reduces the analysis time without compromising the

predictive power. ANGOSS Software o�ers other mining products, particularly for e-business

(KnowledgeWebMiner) and �rms (KnowledgeSERVER for Siebel).

Platforms : Windows 95, 98, NT and 2000, Solaris (Server)

Producer : ANGOSS Software Corporation

MineSet

Description: MineSet is an environment inclusive of many interactive systems, which provide

diverse functionalities, from data access and conversion to diverse data mining techniques. This

allows the user better to better explore and comprehend the data. Currently, MineSet provides

the support for the generation and analysis of association rules, the analysis of classi�cation

models and the determination of the most important columns in a database. Each data mining

system is aided by a data mining visual system that allows data analysis according to di�erent

visual metaphors. The data mining systems that constitute MineSet are:

� Association Rule Generator, that allows the identi�cation of rules, which describe rela-

tionships between entities in databases. The resultant rules serve the purpose of de�ning a

predictive model based on analyzed data that can be used to comprehend tendencies and

predictions in the future. Ride Visualizer visualizes obtained results and makes provision

for more rules to be analyzed.

� Decision Tree Inducer, that generates decision trees directly from the data speci�ed by

the user. Tree Visualizer enables the navigation through the trees, representing them in

3-dimensional landscape.

� Evidence Inducer, that is useful when producing classi�cations containing incomplete data.

The results are visualized through Evidence Visualizer.

� Column Importance, this is a utility for discovering the most important columns in the

database, in terms of data classi�cation. This is very useful when selecting what dimensions

of data to use for data mining visual analysis.

Other data mining visual systems are Map Visualizer, which allows the analysis of tendencies

based on space data relationships, such as time and age and Scatter Visualizer that observes the

tendencies projected in the 3 dimensional space. Figure 11 shows the representation, by means

of the Map Visualizer, of information relative to the sale of products for the entire the United

States. The geographic information on the member states and the data on the latitudinal

and longitudinal coordinates cannot be retrieved from the database. The user, during the

construction of the map, is requested to provide such information.

The Tool Manager is used to access the MineSet data; it provides access to the most di�used

relational DBMSs, and can also access non-relational data sources. It then associates di�erent

visual paradigms to the data to facilitate their exploration. One of the limits of MineSet is its

indissoluble link with the Silicon Graphics environment.

45



Platforms : IRIX 6.2 and beyond

Producer : Silicon Graphics, Inc.

Figure 11: MineSet Map Visualizer

18.1 Open Problems

One of the major problems related to the use of data mining tools is the user's diÆculty in

understanding what to do. Generally, when the more or less expert user begins to analyze data,

he/she has no precise idea of what to look for and how to proceed. In such cases the system

should provide an appropriate visualization of the more relevant data, so that the user can be

better oriented in taking the initial steps. On the contrary, most existing systems begin with

the assumption that the user knows exactly what to look for and how to search (i.e. which

techniques to use).

Another problem is the dynamic interaction with the system that must respond in a sat-

isfactorily fast way to the requests made by the user during the data analysis. This aspect is

connected to the use of appropriate data structures that enable prompt responses in respect of

data updating.

There is yet another problem concerning providing data mining tools with a multi-paradigmatic

environment, equipped with a user model, which allows the system to have a certain degree of

self-adaptability to the di�erent characteristics of the various users, from the amateur to the

expert, from the manager to the analyst.

Lastly, because one data-mining technique is not enough to extract all the information from

a data set, we look forward to the complete integration in one environment, even if composed of

separate tools, of the current data mining techniques and other systems as DBMSs and electronic

sheets. In this manner the output of a tool could serve as input of another and it would be

possible to automatically select the most appropriate technique based on the circumstances. For

example, the output of a rule discovery technique could be better highlighted by a speci�c data

visualization technique.
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