D21

Integrazione, Warehousing e Mining di sorgenti eterogenee
Programma di ricerca (cofinanziato dal MURST, esercizio 2000)

A Generalized Schema Versioning Model
for Object-Oriented and Semi-Structured Data

D1.R4

In this paper we introduce and describe CV M, a generalized conceptual model for schema
versioning support in a heterogeneous environment, where structured (object-oriented) and semi-
structured data can be interoperated. The CV M model is aimed at representing (and reasoning
on) both intensional and extensional aspects in a uniform way and consider “named” conceptual
objects as first-class citizens. The CVY M definition is based on a highly expressive and decidable

FABIO GRANDI

30 aprile 2001

Sommario

Description Logic, ALCQTO.

Tema Tema 1: Applicazioni per basi di dati su Internet e Intranet
Codice D1.R4
Data 30 aprile 2001

Tipo di prodotto

Rapporto tecnico

Numero di pagine 21
Unita responsabile BO
Unita coinvolte BO

Autore da contattare

Fabio Grandi

Dipartimento di Elettronica, Informatica e Sistemistica
Alma Mater Studiorum - Universita di Bologna

Viale Risorgimento 2, 40136 Bologna, Italia
fgrandi@deis.unibo.it

A Generalized Schema Versioning Model
for Object-Oriented and Semi-Structured Data

Fabio Grandi
30 aprile 2001

Abstract

In this paper we introduce and describe CV M, a generalized conceptual model for schema
versioning support in a heterogeneous environment, where structured (object-oriented) and
semi-structured data can be interoperated. The CV.M model is aimed at representing
(and reasoning on) both intensional and extensional aspects in a uniform way and con-
sider “named” conceptual objects as first-class citizens. The CVY M definition is based on a
highly expressive and decidable Description Logic, ALCQZO.

1 Introduction

In this paper we define a generalized conceptual model for schema versioning support which
can be used in a heterogeneous information integration setting. In particular, we introduce a
conceptual model, which can account for object-oriented and semi-structured data, suitable to
enable the adoption of a common export format from information sources for both data and
metadata (e.g. based on XML [26]).

As a reference application environment we consider the same architecture for an integration
system described, for instance, in [8, 9]. In particular, we follow the distinction between a con-
ceptual level, with a global schema defined in an expressively rich language based on Description
Logics [5], and a logical level where source schemata are represented. Owing to the definition of
suitable mappings between the two levels, the global schema and the source schemata can then
be reduced to a common rich formalism for the sake of reasoning and query processing. Within
this framework, in this paper we are mainly interested in the conceptual level, as we will intro-
duce a conceptual model able to capture the semantics of object-oriented and semi-structured
data sources supporting schema versioning.

The conceptual model we will define, called CVM (Conceptual Versioning Model), is aimed
at providing a uniform framework to represent (and reason on) both intensional and extensional
aspects. In a sense, we would like to extend on a formal basis the simple mechanism adopted
in relational systems, where data and metadata are represented in a uniform way as they are
stored in base and catalog tables, respectively, although there is no support for mixed inten-
sional/extensional reasoning at query language level. On the other hand, CVM represents a
unifying framework to represent and query data and metadata in a multi-schema environment,
with the support of a reasoning procedure for query containment (under the constraints imposed
by a CYVM schema) that we will show decidable. Query containment has been emphasized in
several recent papers (e.g. [7, 21]) as a key problem for information integration (e.g. for query
optimization or query rewriting using views).

In this context, we will consider as first-class citizens the conceptual objects which have an
explicit denotation at user-interface level, that is the abstract entities which have a name, known
by the users, which can be used in casual queries and compiled applications to reference data
and which are also subject to change via schema modification. In our setting, such conceptual

objects are classes and attributes (i.e. labeled record components). For these first-class citizens,
we will distinguish between their intensional and extensional features, by means of reification
into distinct concepts in Description Logics (DL). For instance, for each class C of objects with
type T', we introduce an intensional concept ¢, which has the name C' as a proper feature, and an
extensional concept vy, representing the set of objects belonging to the class named C', having as
a proper feature the conformance with the type 1. Moreover, whereas the concept ¢ maintains
its identity across different schema versions, its features are subject to schema changes and also
its extension -y can change as the same class can be populated by different objects in different
schema versions. Intensional concepts will be represented as nominals [25], that is DL concepts
representing a single individual.

The main motivation of this choice is the fact that in a real database (supporting schema
versioning, in particular), the external names of schema objects are purely “accidental” with
respect to the conceptual entities they represent indeed. In all the previous approaches where
Description Logics have been used for useful modeling and reasoning at database schema level
(e.g. in [11, 12]), names were identified with the conceptual objects they denote: a class (at-
tribute) with name C' (A) in the database was represented by a concept C (role A) in the DL.
As a consequence, when schema changes are considered (e.g. in [16]), the change of a “surface
property” as a class name is modeled via the creation of a new concept for the class with the
new name, having the same extension as the concept standing for the class with the old name.
Another important consequence is that, in such a way, it is impossible to reason on conceptual
objects and their names in a uniform framework and, for example, ask intensional-extensional
queries like:

(Q1) Select the current values of the property
that was called A in schema version SV;
carried by every object belonging in schema version SVa
to the class named C' in schema version SVj

Furthermore, since we deal with an integration setting where structured object-oriented data
have to be interoperated with semi-structured data, we will consider a rather “liberal” object
model, non enforcing strict typing. Indeed, we will consider a conceptual model supporting
object polymorphism (and without the so-called object/value dualism) in a fashion similar to
that proposed in [6]. In this way, we aim at correctly modeling the “standard” attribute inheri-
tance semantics between classes with record types and avoiding, at the same time, possible type
conflicts and inconsistencies due to the (multiple) inheritance mechanism in a highly heteroge-
nous integration environment. It should be noticed how, in this respect, the schema versioning
support introduces an additional degree of heterogeneity also between the objects maintained
in a single system, where the very same objects may be represented in different (even mutually
inconsistent) ways. Note that in a system based on a multi-pool implementation solution [14],
the same objects, in different schema versions, can also be associated to different values for the
same attributes.

On the other hand, the CV. M model will provide for quite rich expressiveness, by putting
a full-boolean type language with record and set constructors at user’s disposal. Basically, the
single-schema data model we consider is very similar to the CVL object model proposed in [6].
However, we sacrifice part of its expressiveness concerning roles (CVL provides for a powerful
sublanguage to express complex links between objects as regular expressions involving basic
links) in order to maintain decidability also after the introduction of nominals. As a matter
of fact, we only consider complex roles (in qualified number restrictions) involving inverse (~)
and union (L/) constructors. However, since role union is not considered in standard ALCQZO
(for which decidability and complexity characterization is available [25]), we will also discuss in
Appendix A how its introduction does not impact on the ALCQOTO computational properties,
although it improves expressiveness.

T | T = Af
1| 1T =9
~C | (~C)F = AT\CT
CnD| (cnDY = c¢tnbpt
CuD| (CuD)yt = ctub?t
VR.C | (VR.C)r! = {ie AT |Vj. RL(i,j) = CL(j)}
3R.C | (3R.C)Y = {ie AT|3j. R*(i,5) NCT(j)}
IZ"R.C| (FZ"R.C)E = {ie AT |#{j € AT| RI(i,j) ANCT(j)} > n}
JS"R.C| AsnR.C)YE = {ie AT |#{j € AT| RI(i,j) ANCT(j)} < n}
0] of = singleton subset of A%
R,S— R|
R’ (R): = {(i,j) € AT x AT | R*(j,0)} |
RUS (RUS)T = {(i,5) € AT x AT | R*(i,5) v §* (i, j)}

Figure 1: ALCQZO (with role union) concept and role expressions and their semantics.

2 Preliminaries

We give here only a very brief introduction to the ALC QZO Description Logic; for a full account
of ALCQT and ALCQTQO, see, for example [5, 25]. The basic types of a Description Logic are
concepts and roles. The syntax rules at the left hand side of Figure 1 define valid concept and
role expressions. Concepts are interpreted as sets of individuals—as for unary predicates—and
roles as sets of pairs of individuals—as for binary predicates. Formally, an interpretation is a
pair T = (A%, -T) consisting of a set AT of individuals (the domain of 7) and a function - (the
interpretation function of T) mapping every concept to a subset of A and every role to a subset
of AT x A%, such that the equations at the right hand side of Figure 1 are satisfied.

A knowledge base is a finite set X of axioms of the form C' C D, involving concept expressions
C, D; we write C' = D as a shortcut for both C € D and D C C. An interpretation Z satisfies
C C D if and only if the interpretation of C is included in the interpretation of D, i.e., C* C DZ;
it is said that C is subsumed by D. An interpretation Z is a model of a knowledge base ¥ iff
every axiom of X is satisfied by Z. If X has a model, then it is satisfiable. X logically implies an
axiom C C D (written ¥ = C C D) if C C D is satisfied by every model of ¥. Reasoning in
ALCQTO (i.e., deciding knowledge base satisfiability and logical implication) is decidable, and
it has been proved to be a NEXPTIME-complete problem [25].

2.1 Classes and Attributes

As we anticipated in the Introduction, we consider Classes and Attributes as first-class citizens
of CY M, as they are entities named by users. Each of them is modeled, both at intensional and
extensional levels, by means of reification into an individual concept.

In particular, every class C' : T, with name C' and whose instances are objects with type
T (specified according to a given syntax), is basically represented in CVM by means of two
concepts: ¢ and -y, where ¢ is a nominal representing the class at intensional level and ~y represents
its extension. The axioms defining the class C' : T" in the conceptual schema are the following:

v = dinstance .c
v E (D)

where (T') is the extension of type 7" in CWM. The class object ¢ is connected via a functional
role name to a literal string representing its name (which can also be represented as a nominal
C). A role instance connects the class concept ¢ with all and only the objects in its extension +.

Similarly, every attribute A : 7', with name A and whose instances are objects carrying
a value with type T, is represented by means of two concepts: a and «, where a is a nominal
representing the attribute at intensional level and « represents its extension. The axioms defining
the attribute A : T in the conceptual schema are the following:

o = Vinstance .a
a = dcomponent™.T M 3value.y)(T)

where 9(T') is the extension of type T in CVM. The attribute object a is connected via a
functional role name to a literal string representing its name (which can also be represented as a
nominal A). A role instance connects the attribute concept a with all and only the objects in its
extension « (« contains an instance for every different record object that has the attribute a as
a compounent). Notice that attribute extensions in a schema (version) are all disjoint, whereas
class instances may share the same objects.

Moreover, the objects in the extension « are also connected by two other functional roles
component™ and value to the (record) object whose the attribute is a component, and to their
value (i.a. an object with type T), respectively. Notice that, in this way, a record type T = [A; :
Ti,..., Ay, : T,] (where a; and «; are the concepts representing the A; intension and extension)
will be modeled as ¢(T") C Jcomponent.(aqM3value.yp(17))M- - -M3component. (v, M3value.yp(1y,)).
Therefore, the attribute reification with (functional) roles component™ and value connecting to
records and values is almost the same as the one introduced in [5] to substitute the binary
relationship between record objects and attribute values (with ¥} = component™ and V5 = value).
Moreover, in CY M, the a concepts reify a ternary relationships indeed, which also involves the
intension a, for which a third functional role instance ™ is needed.

In a given database schema (schema version), intensional objects are also connected via a
special functional role active to a nominal concept Yes or No, representing their “activation
status”. Once added (for the first time), new classes and attributes are created as active. Active
classes and attributes can also be dropped via a successive schema change: in such a case they
are not “physically” removed from the schema, they simply become non active. In this way,
they (and their extensions) are not “forgotten” in the schema, and they can be successively re-
activated by means of suitable schema changes. This is a common assumption in several schema
versioning solutions (e.g. based on the completed schema notion [24, 15]), as the first requirement
here is preserving as much information as possible, even in the presence of “destructive” schema
changes, since also deleted information is always potentially amenable to be reused (e.g. when
answering a legacy query). Therefore, the complete semantics of a class definition statement:

Class C' type-is T

is the addition of the new concepts ¢, C (nominals) and 7 to the knowledge base, plus the
addition of the following terminological assertions involving the new individuals:

¢ C dname.C ' dactive.Yes

together with the terminological axioms involving ¢ and y as above to the TBox of the knowledge
base associated with the current schema. Notice that such inclusion axiom implies the following
assertions concerning individuals: (¢, C) : name and (c, Yes) : active. Hence, by means of nomi-
nals, reasoning about schema individuals is reduced to TBox reasoning. Moreover, notice that
in the presence of different schema versions, ¢ is a “global” concept (i.e. defined once and valid
in every schema version), whereas -y is a “local” concept, defined in a single schema version,
since, in general, every class may have a different extension in each schema version.

Unlike classes, new attributes are not explicitly defined in “isolation” (i.e. by means of a
dedicated statement) but are implicitly introduced through the definition of record types (in

Object
////1117\\

| ExtensionalObject IntensionalObject
Litﬂ AtomicObject ComplexObject Class Attribute
Name Value ClassInstance Attributelnstance

Figure 2: The CVM object hierarchy.

the type expression of a class declaration). For each attribute A : T' defined in a record type
declaration, the new concepts a, A and « are introduced and the following assertions:

a C dname.A M Jactive.Yes

are added to the TBox with the axioms involving a and « as above. (ABox assertions (a, A) :
name and (a, Yes) : active on schema individuals are implied). Notice that a is also a “global”
concept, whereas « is “local” with respect to a specific schema version, since also attributes may
have different extensions in different schema versions.

2.2 Objects

All the objects in the CY M domain comply with the hierarchy depicted in Fig. 2, that is they
are organized according to the following taxonomy:

e IntensionalObject: the domain of intensional objects, denoting individual concepts of the
schema, which can be referenced by means of a name at user-interface level; these can be
of two types:

— Class: the domain of objects representing a class defined in the schema

— Attribute: the domain of objects representing an attribute defined (for a record in the
type expression defined) for a class of the schema

e ExtensionalObject: the domain of extensional objects, which are used to represent data
instances and link them with the intensional objects; these include:

— AtomicObject: the domain of “visible” objects, representing data values as they can
be manipulated at user-level; these can be of two types:

* Value: the domain of “terminal” data values, that is literals representing a con-
stant value of the domain (character data)
* Classlnstance: the domain of objects belonging to the extension of a defined class,

representing, when used as a “terminal”, a reference to another individual object
(like OIDs in object databases or “id/idref’s in XML)

— ComplexObject: the domain of “hidden” objects, which are used to build the structure
of complex types, linking individuals to their terminal data values; these include:

x Attributelnstance: the domain of objects belonging to the extension of a defined
attribute

General axioms ruling the CV M object hierarchy are:

T
Object

Object
IntensionalObject LI ExtensionalObject LI Literal

IntensionalObject C —ExtensionalObject

Literal C —lIntensionalObject M —ExtensionalObject
Class LI Attribute

Class C —Attribute

AtomicObject LI ComplexObject

AtomicObject C —ComplexObject

IntensionalObject

ExtensionalObject

Attributelnstance T ComplexObject
AtomicObject

Value Ll Classlnstance

Value C —Classlnstance

where Classlnstance (Attributelnstance) is the set containing all the objects which can be instances
of a class (attribute); attribute instances are all distinct.

vy, ,9m (q,... ,a,) are the class (attribute) extensions in a given CWM schema (ver-
sion), we have:

Yy U Uy Classlnstance

ap - Uay,

M

Attributelnstance
a; C —aj (1<i<j<n)

Name is the set of objects which are the extension of all distinguished nominals used as class
and attribute names. Class and attribute names, as well as terminal attribute values are defined
as character data literals; Literal also contains Yes and No distinguished nominals (and Yes and
No actual values):

Value LIName Ll Yes LUINo LC Literal

Definition 1 A Type/Data Graph (TDG) in a given schema (version) is a connected sub-
model of CY M, starting from a node in Class, having instances of ComplexObject as inner nodes
and instances of AtomicObject as terminal nodes.

In particular, each TDG is composed by a tree-shaped CV .M submodel rooted on a node, say
¢, in Class intersecting (on common Attributelnstance nodes) all the tree-shaped CV M submodels
rooted on a node in Attribute representing an attribute in the type of the class denoted by ¢ (see
Fig. 3). The leaves of the intersecting trees are the terminal nodes of the TDG.

Every CV M database is a collection of the TDGs corresponding to each defined class, having
instances of AtomicObject as terminal nodes and instances of ComplexObject as inner nodes.
Nodes in a TDG are linked by means of suitable CVM roles. These are:

e instance, linking each intensional object with the objects in its extension;
e name, connecting each intensional object to its name;

e active, telling whether the intensional object is active, or has been deleted, in the current
database schema (resp. by connecting the object to the Yes or No nominal);

V32

Figure 3: A sample TDG for the class denoted by ¢. Intensional objects ¢, a; and a9 are evidenced
with circles. Class and attribute extensions are: v = {01,09,03}, a7 = {v11,v91,v31}, 09 =
{v12,v22,v32}. Individual objects o’ and o” belong to the extension of another class (whose TDG
is not drawn in figure).

e member, linking a set-type (complex) object with the objects belonging to the set;

e component, linking a record-type (complex) object to instances of the attributes defined
for that record type;

e value, connecting an attribute instance with the terminal object representing its value;

In particular, a TDG contains directed edges labeled with instance, member, component and
value role names. The constraints on which object pairs can be connected by each role can be
expressed as follows:

IntensionalObject Jname.Name N Jactive.(Yes LI No)
Class dinstance.ClassInstance
Attribute dinstance.Attributelnstance

ComplexObject L ClassInstance
Attributelnstance

Jcomponent.Attributelnstance LI 3member.ExtensionalObject

I

Jvalue.ExtensionalObject

The following assertions enforce the functionality of the involved roles:

T C 3%'name. T N 3=lactive. T
Attributelnstance T 3<'instance . T
T C 3component . T M3I<tvalue. T M3 member . T

Notice that the instance™ role is functional for attributes only, since attribute instances are all
disjoint, whereas the same objects may belong to different class extensions (e.g. to represent
is-a relationships). The further constraint:

ComplexObject T 3<!(member™ L component™ Lvalue™).T

is very important for the semantics of CV M, as it requires every inner node of a TDG to
have exactly one predecessor object in every legal instance of the conceptual model. As a
consequence, each inner node cannot be “reused” in the same or even in a different TDG: each
edge in a TDG can only lead to a terminal object (AtomicObject) or to an always “fresh” inner-
node object (ComplexObject). This means that any CVM knowledge base representing a legal
database cannot contain cycles only involving objects in ComplexObject (i.e. cycles can only be
closed through an individual in ClassInstance used as a terminal value of a TDG). Hence, any
CVYM model does not contain any “bad” cycle (in the sense of [12, Sec. 5.3]) corresponding, for
example, to records with infinite depth or sets having themselves as members, which would not
represent any meaningful database state. In other words, each TDG is well-founded in the sense
of [6] thanks to the CWM structural constraints and does not require further specifications (or
checks) to ensure it. Finally, we have:

Literal = 3%(instance LI name LI active LI member LI component LI value). T

stating that Literal objects are terminal nodes of TDGs.

Definition 2 A CVM Repository is an ALCQTO knowledge base containing the definitions
(intensional and extensional) of all the TDGs which are part thereof.

In particular, every CVM Repository contains the specifications of a CV M Schema.

Definition 3 A CVM Schema is a tuple CVM = (Object, Sy, SVs), where
e Object is a finite set of object instances;
o 5y is a knowledge base containing the basic CVM general axioms;

o SVs ={SV1,...,8Vs} is a finite set of knowledge bases, each of which contains the CV.M

axioms representing a schema version.

Classes and attributes (denoted by intensional objects) may be active or not, may have different
names and also different extensions in different schema versions. Therefore, each schema version
SV; contains a “private version” of every CV.M role, that we will distinguish by means of numeric
subscripts corresponding to the belonging schema version: name;, active;, instance;, member;, component;
and value;.

Notice that, whereas basic concepts are “global” in a CYV. M knowledge base, roles are “local”
to a schema versions. For instance, we have as many instance,... ,instance; roles as many
schema versions SV1,... ,SV; (e.g. instance; is the role connecting intensional objects to their
instances in schema version SV; and so on). Unlike basic concepts, class and attribute extensions
(namely ;s and «;s) are “versioned” in a CY M schema.

2.3 An Object-Oriented Syntax for Types

In this section we consider how CV.M object types can be defined (e.g. at user’s interface level)
by means of a suitable syntax, which may correspond to some Object-Oriented data definition
languages (e.g. as for the static part of ODMG).

In CYVM we consider complex types built by means of Boolean operators, record and set
constructors from a single basic atomic type CDATA (i.e. the same as in XML) for expressing
character data, as usual for semi-structured information sources. Obviously, “traditional” strings
and numbers can be encoded as CDATA literals and suitable operations to manipulate specific
subtypes can be defined as class methods. However, the definition and management of methods
is beyond the scope of this paper. Complex types can also be built from defined Classes to
define, for example, ODMG-like relationships or is-a links implying (multiple) inheritance.

Attribute and class types can be defined as complex type expressions T' built according to
the following syntax:

T — C |
(terminal type) CDATA |
(complement type) not 7' |
(union type) T, or Ty |
(intersection type) T, and T, |
(record type) [Ay Ty, .. A Ty] |
(set type) {Thmen -

where C and A;s are respectively class and attribute names, and m : n denotes an optional
constraint on the set cardinality.
For example, the TDG displayed in Fig. 3 represents a class ¢ defined as:

Class C type-is [A, : CDATA, Ay : CDATA | and {C'}

with instances:

o1 : [A1:V11, Ay :V12] and {0’}
o9 : [A1:V21, Ay :V22] and {0, 0"}
03 [A12V31,A2:V32]m{}

The type constructors can be assigned a CV M semantics according to the following recursive
rules:

(C) = dinstance™.(3name.C)
1(CDATA) = Literal
Y(not T) = —(T)
Y(Tror Ty) = (Th) U4p(T2)
Y(Trand 7o) = (1) Ny(13)
(AL :Th,... , A : T]) = 3I='component.ay M--- M 3= component.ay,
Y({Tmm) = Vmember.y)(T) M IZ"member. T M I<"member. T

Actually, the record type semantics has also, as a “side-effect”, the addition of the terminological
axioms ruling the new attributes to the knowledge base:

a; L dname.A4; a; L dactive.Yes

a1 = Vinstance .a; oy T dcomponent . T M 3value.yp (1)

a, = dname.A, a, LC dactive.Yes

o, LC Vinstance™ .a, ap, LT Jcomponent™. T M 3value.yp(Ty,)
where a1, ... ,ay are fresh nominals, A;,... , A, are nominals denoting the corresponding string
objects in Literal, «ay,... ,«, are the concepts representing the attribute extensions in a given

schema (version).

Notice that the type system at user’s disposal includes all the constructors usually needed
to define semi-structured data. For example, syntax of ssd-ezpressions in [1] require OIDs,
terminal values, and a labeled-record constructor. The availability of a set constructor allows
the definition of collections of similar ssd-expressions (e.g. as it happens for XML data). Object
polymorphism (as well as the availability of the type union constructor) is an additional “feature”
that we consider very useful in a integration environment, where highly heterogeneous sources
may be considered (e.g. HTML data or XML data non conforming to any DTD) together with
structured sources, and the same objects may have very different representations in distributed
information sources.

2.4 A Path Language for Attributes

Notice that, for every database schema (version), class names are global identifiers, whereas
attribute names are unique identifiers only in the context of the (consistent) record type they
are component of.

Due to uniqueness of (active) class names, the intensional class whose name is C € Name
can be denoted in CVM as:

¢ L Classl dname.C' I dactive.Yes

Moreover, uniqueness of C' can be checked by means of a reasoning task looking for unsatisfiability
of a concept ¢ defined as follows:

¢ = —c¢nNClassM 3name.C M Jactive.Yes

Let us consider now denotation of attributes with respect to the type language, that will con-
stitute a basic component of the external data manipulation and schema manipulation languages
at user’s disposal. As far as attributes are concerned, name uniqueness (and, consequently, con-
sistency of record types) can be checked, for each attribute name A € Name, by means of a
reasoning task consisting in unsatisfiability of a concept a’ defined as follows:

a’ = -—an Attribute 1 3name. A M Jactive.Yes M Jinstance.(Icomponent .0), where

o L dcomponent.(Jinstance™ .(a M Attribute I Iname. A M Jactive.Yes))

10

and a and o are fresh nominals. Since a M Attribute I Iname.A represents an (intensional)
attribute @ whose name is A, o denotes one record-type object having a as a component. Hence,
a' is defined as an (intensional) attribute different from a with the same name A and being a
component of the same record o. If such an o’ exists, the record type whose o is an instance
is inconsistent as it has two different attributes with the same name. Hence, if concept a’ is
unsatisfiable indeed, uniqueness of name A is ensured in the record type it belongs.

As far as attribute name uniqueness in the presence of record type built via Boolean con-
structors is concerned, we assume the following rules to be followed to obtain a “normalized”
type definition with unrepeated attribute name occurrences in every record type:

[A:T,A;:Ty,...]and [A: T Ay : To,...]

= [A:TandT']and [A;:Ty,...] and [Ay: T>,...]
[A:T, A :Ty,...]or [A:T' Ay : Ty, ...]

= [A:TﬂTl]m([Al:Tl,...]g[AQ:TQ,...])

If attribute name uniqueness is enforced for each defined record type, individual attributes can
still be uniquely referenced in a conceptual schema by means of a unique path expression, as
described in the following. Although attributes are uniquely denoted by their name in the record
they are component of, attributes with the same name can be freely used in the definition of
different record types or even within the same complex type, as in the example which follows,
representing a perfectly legal type structure:

T:[Al . [AQZTl,Ag ITQ],AQZ[Al :T3,A3 :T4]]

where each attribute name occurs twice but all six attributes are distinct and distinguishable. As
a matter of fact, all the types in a schema can only be introduced as class type declarations and
all class types have a tree structure rooted on the class itself. Therefore, it is always possible to
uniquely identify each attribute in a schema by means of its name and the path which connects
it to the class whose type it is part of. For instance, if class C has been declared with type T
as in the above example, the attributes referenced by the leftmost (rightmost) occurrence of A;
and As can be denoted, respectively, as C.A; (C.As.A1) and C.A1.A3 (C.Az.A3).

Taking into account also set constructors, every attribute in a schema can be uniquely
denoted by a path expression with the form X.A where the path X can be recursively built
according to the following syntax:

X—->XA|X>|C

For example, the path expression C.A 5 B.A 35 C.A represents the innermost A attribute of a
class:

C:lA{[B:[A{[C:[A:T,... ..}] I

Notice that, in general, one class and (possibly more than) one attribute may have the same
name.

As to semantics, in the CY M conceptual model, the (active) intensional attribute referenced
by the path expression X.A can be uniquely denoted as:

a = Attribute ' Iname. A M Jactive.Yes 1 Jinstance.(Icomponent™.(¢(X)))

where a is a fresh nominal and ¢(X) is recursively defined according to the following rules:

©(C) = dinstance .(Class 1 3name.C 1 Jactive.Yes)
©(X 2) = dmember .(p(X))
¢(X.A) = 3value .((Jinstance .(Attribute N Iname.A I Jactive.Yes)) M (Icomponent .(¢(X))))

11

3 Reasoning Problems

According to the semantic definitions given in the previous section, several interesting reasoning
problems can be introduced, in order to support the design and the management of a CY M
repository with an evolving schema [16].

Definition 4 Given a CVM repository with schema S we introduce the following reasoning
problems:

a. Local/Global Schema Consistency: a CYM schema version SV; of S is (locally) consistent
if, as an ALCQTO knowledge base, SoUSV; is satisfiable (i.e. it admits a model); a CY M
schema S is globally consistent if the ALCQTZO knowledge base So U SV, U ---USV; is
satisfiable.

b. Local/Global Class Consistency: a CYM class named C is locally consistent in the schema
version SV; if there is at least one model I of SV; such that the concept y; = Jinstance; .(ClasslT
dname;.C M Jactive;.Yes) is satisfiable, i.e. So USV; v CL; a CYVM class named C in
SV; is globally consistent in S if it is consistent in every schema version SV; € S, i.e.
SoUSVy [CL, ..., S USV, [E v TL, where v; = EIinstance;.(CIass M dname;.C 1M
Jactive;.Yes) for j = 1..s.

¢. Local/Global Class Disjointness: two CVM classes named C, D are locally disjoint in the
version SV; if for every model T of SV; the intersection of (the interpretation of) their
extensions y; = Jinstance; .(Class [3name;.C I Jactive;.Yes) and d; = Jinstance, .(Class I
dname;.DM3active;.Yes) is empty, i.e. SQUSV; = viMd; C.L; two CYM classes, the former
named C in SV; and the latter D in SVy, are globally disjoint in S if for every model T
of SyUSV1U---USVy, their extensions vy; = Elinstancej_.(CIass M3name;.C 1M Jactive;.Yes)
and 0; = EIinstance;.(CIassl‘lElnamek.Dl_IElactivej.Yes) are disjoint in every schema version
where they are both active, i.e. SyUSV1 =7y Mo CL,... ,SoUSVs =M CL.

d. Local/Global Class Subsumption: a class named D locally subsumes a class named C' in the
schema version SV; if the extension ~; = Jinstance; .(Class I Iname;.C I Jactive;.Yes) of
C is included in the extension 6; = Jinstance; .(Class [Iname;.D I Jactive;.Yes) of D, i.e.
SoUSV; =i C d;; a class named D in SV; globally subsumes a class named C in SVy, if
SoUSVi E1 Céi,...,SoUSVYs s T 6,5, where vj = EIinstance;.(CIass M 3dname,.C 1M

Jactive;.Yes) and &; = Jinstance; .(Class [Iname;.D I Jactive;.Yes) for j = 1..s.

4 Schema Changes

During the repository lifetime, a new schema version SV; can be derived from an existing schema
version SV; via the application of the modification M;;. Each schema version SV; € SVs has
been derived in this way, starting from scratch (Sp). In general, M;; is a set of schema changes
corresponding to the operators listed below. The schema change taxonomy is built by combining
the schema elements which are subject to change with the elementary modifications (add, drop,
reactivate and change) they undergo. Moreover, a Merge-class C, SVi, C’ change is considered,
which “merges” the definition of class C' in SV}, into the definition of class C in SV; to produce
the C class definition in §V;. The complete list is:

M — Add-class C, T | Drop-class C | Reactivate-class SVy, C |
Change-class-name C, ¢’ | Change-class-type C, T" |
Add-attribute X.A, T' | Drop-attribute X.A | Reactivate-attribute SVj, X.A |
Change-attr-name X.A, A’ | Change-attr-type X.A, T" |
Merge-class C, SVy, C’

12

Notice also that the “reactivate”-type schema changes require the element to reactivate be non
active in SV; (i.e. it must have been dropped before or with the SV; creation) but active in a
schema version SVy, from which its definition is taken. Actually, SVy is necessary to uniquely
define the class to reactivate at intensional level. This is due to the fact that, whereas more than
one non active class with the same name C' can be present in SV; (all distinct at intensional
level), only one active class with the name C' may be present in any schema version (including
SVg).

An (operational) semantics of schema changes can be defined according to the specifications
listed below. They all involve: (1) a reasoning task, checking for the legal applicability of the
proposed schema change over the schema version SV; under modification; (2) a “copy” from
the knowledge base SV; to the new knowledge base SV; of all the axioms non affected by
the schema change; (3) the completion of the SV; knowledge base building by addition of the
axioms concerning the modified part (e.g. axioms ruling a newly created class). Notice that
the “copy” of axioms from SV; to SV; corresponds to an implicit inter-schema relationship
between the two schema versions, as the corresponding data are forced to have the same (or
similar) type structure. Therefore, a schema change enforces a set of implicit inter-schema
counstraints on the possible legal instances of the two schema versions but, in general, it does
not imply any tighter constraint on the actual instances of the two schema versions, as they are
allowed to evolve completely independently from each other: this happens, by definition, in a
database supporting schema versioning under the multi-pool implementation solution [14] or in a
heterogeneous environment where, for instance, spatial schema versions are used to encapsulate
the distributed sources which are, in fact, absolutely independent [23].

Changes on Classes

Add-class C, T

1. check unsatisfiability of: Class M Iname;.C M Jactive;.Yes (if it fails, reject the schema change)
2. copy in 8V; all the assertions in §V; (by changing the subscripts from 4 to j)

3. add to SV; the axioms: ¢ = Class [3name;.C M Jactive;.Yes and v; C Jinstance; .c M1; (1),
where c¢ is a fresh nominal (v; (T') uses roles with subscript j and involves, if it (recursively) contains
record type definitions, the addition of axioms defining the new attributes)

Drop-class C'
1. check satisfiability of: ¢ = Class MM dname;.C M Jactive;.Yes (if it fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j) but the axioms involving ¢
and its extension y;

3. add to SV; the axiom: ¢ = Class [1dname;.C I Jactive;.No

Reactivate-class SVi, C

1. check satisfiability of: ¢ = Class M dnamey.C M Jactive,.Yes M Iname;.C 1M Jactive; .No (if it fails, reject the
schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from i to j) and, from SV, (by
changing the subscripts from k to j), all the assertions involving the ¢ extension

3. add to §V; the axiom: ¢ = Class 1 3name;.C N Jactive;.Yes

Change-class-name C, C’

1. check unsatisfiability of: Class N Iname;.C’ M Jactive;.Yes and satisfiability of:
¢ = Class M 3dname;.C M Jactive;.Yes (if it fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j), including the axiom
involving the c extension +;, but the axioms involving ¢ as above

3. add to SV; the axiom: ¢ = Class 1 Iname;.C’ N Jactive;.Yes

13

Change-class-type C, T"
1. check satisfiability of: ¢ = Class M dname;.C M Jactive;.Yes (if it fails, reject the schema change)

2. copy in 8V; all the assertions in SV; (by changing the subscripts from 4 to j) but
~vi € Jinstance; .c M (T7)

3. add to SV; the axiom: v; T Jinstance; .c M ¢;(1")
(1, (T") uses roles with subscript j and involves, if it (recursively) contains record type definitions, the
addition of axioms defining the new attributes)

Notice that other schema changes usually considered in the literature (e.g. [3, 16]) to directly
manipulate the class type hierarchy can easily be effected through the Change-class-type op-
eration. For instance, if class C has type T in S8V;, the schema change Add-is-a C,C’ can be
effected as Change-class-type C, T and C'.

We consider now schema changes involving attributes. Notice that the involved attributes
are denoted by means of the previously defined path language. This is a noteworthy extension,
which provides for schema changes involving any attribute, even in the presence of multi-level
nested record definitions, whereas schema evolution and versioning approaches (e.g. [16]) usually
consider attribute modifications only for classes defined with a “flat” record type.

Changes on Attributes

Add-attribute X.A, T
1. check unsatisfiability of: Attribute M Iname;. A M Jactive;.Yes M Jinstance;.(Icomponent; .p; (X)) (if it fails,
reject the schema change)
2. copy in SV; all the assertions in SV; (by changing the subscripts from 4 to j)

3. add to SV; the axioms: a C Attribute M Iname;.A I Jactive; . Yes, ; = Vinstance; .a and
a; £ 3component; . (p; (X)) M 3value;.4h; (T). (v;(X) and ¢;(T") use roles with subscript j and involve, if
they (recursively) contain record type definitions, the addition of axioms defining also their attributes)

Drop-attribute X.A

1. check satisfiability of: a = Attribute M Iname;. A N Jactive;.Yes M Jinstance;.(Jcomponent; .¢; (X)) (if it
fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j) but the axiom involving a
and its extension «;

3. add to SV; the axiom: a = Attribute M Iname;. A N Jactive;.No M Jinstance;.(Icomponent; .¢; (X))

Reactivate-attribute SV, X.A

1. check and satisfiability of: a = Attribute M Inamey.A I Jactive,.Yes M Jinstance.(Icomponent; .¢x (X)) M
M3name;. A M Jactive;.No M Jinstance;.(Icomponent; .¢; (X)) (if it fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j) but the axiom involving a
and, from SVj, (by changing the subscripts from k to j), all the assertions involving the a extension ay

3. add to SV; the axiom: a = Attribute M Iname;. A N Jactive;.No M Jinstance;.(Icomponent; .¢; (X))

Change-attr-name X.A, A’

1. check satisfiability of: a = Attribute M Iname;. A M Jactive;.Yes M Jinstance;.(Icomponent; .(¢:(X) M
—3Jcomponent,.Jinstance; .(Iname;. A’ M Jactive;.Yes))) (if it fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j), including the axiom
involving the a extension «;, but the axiom involving a as above

3. add to SV; the axiom: a = Attribute 1 3name;.A’ 1 Jactive;.No M instance;.(Icomponent; .p; (X))

Change-attr-type X.A, T'

14

1. check satisfiability of: a = Attribute M Iname;. A M Jactive;.Yes M Jinstance;.(Icomponent; .(p;(X))) (f it
fails, reject the schema change)

2. copy in 8V; all the assertions in §V; (by changing the subscripts from 4 to j) but the axioms involving
a; = Vinstance; .a

3. add to SV; the axioms: «; = Vinstance; .a, a; & 3component; .(¢; (X)) M Ivalue;.1; (T')

Notice that the use of nominals allow classes and attributes to preserve their identity across dif-
ferent schema versions regardless of renamings they possibly undergo. In previous approaches,
where new concepts had to be introduced to cope with renaming, the relationship between the
concept with the old name N and the one with the new name N’ was usually modeled through
the introduction of a synonymity between N and N’. However, such kind of synonymity is of
a different kind (i.e. stronger) with respect to synonymity usually considered in an integration
environment. The preservation of identity of renamed concepts avoids possible confusions be-
tween different kinds of synonymity, and allows us to deal with “standard” synonymities due to
inter-schema constraints as usual, without the further complication of inter-version synonymities
induced be renaming of conceptual objects in the schema.

We consider now the Merge-class schema change. It should be noticed that, at intensional
level, such a primitive is sufficient to define all the merge-type schema changes usually con-
sidered in the literature (e.g. in [19]; notice that AddProperty and PickProperty of [19]
are both equivalent, at intensional level, to an Add-attribute schema change: they only differ
in the change propagation, as the former assigns null values to the new attribute and the lat-
ter adds a populated attribute by copying its values from a previous version.). The “classical”
MergeVersion operation can be effected by repeated applications (for every present class) of
the Merge-class primitive.

Merge-type changes

Merge-class C, SV, C’
1. check satisfiability of: ¢ = Class Iname;.C N Jactive;.Yes and: ¢’ = Class [N Inamey,.C’ 1 Jactivey.Yes (if it

fails, reject the schema change)

2. copy in SV; all the assertions in SV; (by changing the subscripts from ¢ to j), including the axiom
involving ¢ as above, but the axiom involving the ¢ extension 7;

3. let the axioms concerning the c and ¢’ extensions (resp. in §V; and SV}) be 7; C Jinstance; .c M ¢; (T)
and yx C Jinstance, .’ M¢;(T"), then add to SV; the axiom: ~; C Jinstance; .c M (¢;(T) U1p;(T")) where
;(T) (resp. ¥;(T")) is obtained by ;(T) (resp. ¥« (T")) by turning all the role subscripts into j.

In general, a (complex) schema change is composed by a sequence of primitive schema changes
followed by change propagation statements, which complete the schema change by rearranging
the stored data at extensional level. Such statements, as the data to populate the new schema
version may be computed as a query on the modified version(s), require the definition of a
suitable query language to be used in a schema versioning environment.

5 Query Language

. . w . i v
As far as the query language at user’s disposal is concerned, we consider non-recursive Datalo
queries, that is disjunctions of conjunctive queries, expressed in the general form:

Q(i) — bOdyl (i7 S;lu 61) V-V bOdyq(}_{'7 S;Q7 Eq)

where each body;(X,¥;, ;) is a conjunction of atoms and X,¥; (resp. C;) are all the variables
(resp. constants) appearing in the conjunct. Each atom has the form C(z) or R(z,y) where

15

C (resp. R) is a primitive concept (resp. role), z and y are variables or constants in X,¥;, C;.
Constants can be thought as nominals denoting an individual in the domain. The number of
variables in X is the arity of the query ¢. Notice that roles in a query may belong to different
CVM schema versions, allowing users to freely express the most general form of multi-schema
queries. For instance, the (simple) example of multi-schema query @7 in the Introduction can
be expressed (assuming SV, be the current schema) as:

qi1(z) <« Class(y1) A names(y1,C) A actives(y1, Yes) A
activeg(y1, Yes) Ainstances(y1, y2) A
Attribute(y4) A name; (y4, A) A active; (y4, Yes) A
actives(ya, Yes) A component,(y2,y3) A instances(ya, y3) A

value(ys, x)
Another interesting example of (intensional) multi-schema query is the following:

¢2(z) < Class(y;) A names(y1,z) A
actives(y1, Yes) A activeg(y1, Yes) A activey(y1, No)

Vv Class(y2) A names(y2,) A
actives(ya, Yes) A activeg(y2, Yes) A actives(y2, No)

asking for the names (in SV3) of all the classes that were active in SV3 and SV but had been
dropped in between (i.e. they were not active in SV, or SV3).

Given an interpretation Z of a CV M schema S, a query ¢ for § of arity « is interpreted as
the set ¢Z of a-tuples (o1,... ,04), with each o; € AZ, such that the FOL formula:

3y1- body: (X, ¥1,€1) V- -+ V Iy, bodyy (X, ¥, €g)

evaluates to true when substituting each o; for z;.

We consider now the query containment problem [7] (under the constraints imposed by
a CYM schema), which is a central problem in several database applications, including data
integration problems (e.g. [10, 21]). If ¢ and ¢’ are two queries of the same arity for S, we say
that q is contained in ¢’ wrt S and write S = ¢ C ¢’ iff ¢* C (¢')* for any model Z of S. Given
a CVM schema § and two queries for S:

—

1,€1) V -+ Vbody,(X,¥,,)
1176I1) VeV bOdy;’(iu)_”:],,6:1/)

we have that S = ¢ C ¢’ iff there is no model of S that makes true the formula:

(bOdyl (iu 5;17 61) VeV bOdyq(iu)_;qa Eq)) N
—3Z). body) (X, 21,C)) A -+ - A =3Zg. bodyy (X, Zq , €)

The query containment problem consists of checking whether S |= g C ¢’ for assigned S,¢,¢'. In
CVM it can be solved as a reasoning task consisting in checking inconsistency of an ALCQZ-
TcBox [25] T, that is a set of cardinality constraints on ALCQT concept expressions in the
form (< n. C) or (= n. C). In order to define the required T¢Box, we slightly “augment” our
CY M knowledge base to include a new nominal w (denoting a starting point which we add to
the domain) and a newly defined role U through which each individual in the domain can be
reached from w? (including w? itself; actually U~ o U represents the universal role):

(A = ATufw’)
S = Su{TCFU . T,w=3U0.T}

16

Hence T can be defined as:

T = To(S')UTe(var) UTe(q) UTe(q) U To(w)

where:
Tos) = U d<o.cn-ppu |J {(KLo),(>1 o)}
{CCD}es’ o nominal in &'
To(var) = U {(§ 1. A)), (> L Av)} U U {(> 0. Av)}
v in (R,§;,8,8) v in (Zj)

J

tew = (1 4 (T, AN (1 i ara))

i=1l..q in body; R(u,v) in body;
TC(q’) = {(> L. ,_|_| ,q)body’l)}
Jj=1.¢q J
To(w) = U {c1ren-0)}u U {(>1. wn-4,)}
{CED}GS/ v in (§7§176176;7Z])

where ©,4,/ represents the encoding of each ~3Z;. body; (X, Zj, €;) and can be built (in a similar
J

way as in [7]) as follows. We start from a dependency-graph (similar to the tuple-graph in [7])
which evidences the cyclic dependencies between variables [13]. The dependency-graph is a
directed graph with nodes labeled by ALCQT concepts and edges labeled by roles defined as:

e there is one node v for each term in X, z;, é';, labeled by A, and by all C such that atom
C(v) appears in bodyj;

e there is one edge from node u to node v, labeled by R, for each atom R(u,v) occurring in
body/'..
J

The dependency-graph is, in general, composed of m; > 1 connected components. For the /-
th component, we build an ALCQT concept Ay(Z;), starting from a node vy and visiting the
component as follows. Let w the current node in the visit and ¢, the formula produced by
visiting u; if 4 has already been visited, then ¢, = A,, otherwise is it the intersection of:

e every concept labeling the node u (including A,);

e JR.(A,lM¢,) for each non-marked edge (u, v) labeled by R, where ¢, is the concept resulting
by marking the edge (u,v) and visiting the node v;

e JR™.(A, N ¢,) for each non-marked edge (v,u) labeled by R, where ¢, is the concept
resulting by marking the edge (v,u) and visiting the node v.

Then Ay(Zj) = ¢y, and Qbody; is obtained as the conjunction of all concepts obtained by replacing
in

L VU~A(Z))

£=1..m;

each concept A,, with v in Z;, occurring in a cycle in the dependency-graph by each of the
concepts A, corresponding to a variable (or constant) v in (X, ¥;, é'i,é';). The number of such

conjuncts in Pp,q, is O(ﬁ?), where ¢, is the number of variables and constants in g plus the
J

number of constants in ¢’, and £y is the number of z variables occurring in a cycle of the
dependency graph for ¢'.

Lemma 1 Let S’ be an augmented CVM schema and q, ¢’ two queries as above. Then deciding
whether S = q C ¢' can be done in NEXPTIME by checking inconsistency of the ALCQZ-T¢ Box
T.

17

Proof (sketch). The correctness of such encoding can be proved, taking into account that the
interpretation of the newly introduced concepts A,’s represent in T¢:(q) and T (¢') values in the
range of the corresponding variable v. The first part of T(var) states that all the variables in
(X,¥i,Ci, é';) assume as value an individual of the domain, whereas the second part of T¢(var)
states that the variables in (Z;) may assume any value in the domain. The substitutions made
in Te:(q") for the z variables occurring in cycles of the dependency graphs accounts for the fact
that the body’ may evaluate to true or false due to the assignments to variables and constants in
(X, ¥, Cis é';) forced by ¢ and other conjuncts in ¢’ and to the dependency between variables (see
also [7]). The T¢(w) constraints only ensure that the newly added object w? does not “interfer”
with satisfiability of other constraints on A; in particular, it can be proved that S is satisfiable
ift §' is satisfiable and S EF ¢ C ¢ it ' Eq C ¢'.

Completeness of the encoding (7 inconsistent = S’ [~ ¢ C ¢’): The consistent TcBox T
admits a model Z that we can check makes true q and not ¢'. First of all, Z satisfies all the
constraints in T¢(S') and, thus, is a model of §’. The models of S’ are connected [2] (due to the
existence of the universal role) and every individual of Z can be reached from w’. In particular,
Tc(q) consistency states that from w? we can reach a tuple of objects that makes true ¢ and is
compatible with the assignments of domain individuals to variables and constants ensured by
the first part of T¢(var). On the other hand, T (¢') consistency states that there is no combined
assignment of variables and constants in ¢ and any choice of the (Z;) values in the domain that
makes true any body; conjunct.

Soundness of the encoding (7 consistent = &' = ¢ C ¢’): With a similar reasoning, one
can verify that every model Z of &' in which there is at least one tuple satisfying ¢ and not ¢’
satisfies all the constraints in the T¢Box 7.

Complexity: Consistency of an ALCQZ-T¢Box is a NEXPTIME-complete problem [25]. O

It can easily be shown that the same results still hold if atoms in the body; conjuncts are
also allowed to include equality predicates between the involved variables and constants. On the
other hand, we conjecture that decidability is lost if inequalities are allowed in query conjuncts
(as it happens for the conceptual model based on DLR,,, studied in [7]). An intuition on this
fact can be given by considering that the introduction of inequalities corresponds to provide for
a transitive role to mimick the order relation < in the ALCQZO Description Logic. Moreover,
it has been shown (e.g. in [20]) that the addition of transitive roles in the presence of a role
hierarchy in a strict sublanguage of ALCQZO leads to undecidability (the availability of the role
union constructor easily allows to define a role hierarchy since R C R LI S, see also [18]).

Other useful reasoning tasks involving queries in an integration context, like query consis-
tency and query disjointness, can be reduced to deciding query containment as shown in [10].

References

[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann Publishers, San Francisco, CA, 1999.

[2] F. Baader. Augmenting Concept Languages by Transitive Closure of Roles: an ALternative
to Terminological Cycles. In Proc. of Intl’ Joint Conf. on Artificial Intelligence (IJCAI’91),
1991.

[3] J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and Implementation of
Schema, Evolution in Object-Oriented Databases. In Proc. of the ACM-SIGMOD Annual
Conf., pages 311-322, May 1987.

18

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Borgida. On the Relative Expressiveness of Description Logics and First Order Logics.
Artificial Intelligence, 82:353-367, 1996.

D. Calvanese, G. De Giacomo, M. Lenzerini, and D. Nardi. Reasoning in Expressive Descrip-
tion Logics. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning.
Elsevier, 2000.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Structured Objects: Modeling and Rea-
soning. In Proc. Intl’ Conf. on Deductive and Object-oriented Databases (DOOD’95), 1995.

D. Calvanese, G. De Giacomo, and M. Lenzerini. On the Decidability of Query Containment
under Constraints. In Proc. of the 17th ACM SIGACT SIGMOD SIGART Symposium on
Principles of Database Systems (PODS’98), pages 149-158, 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Description Logic
Framework for Information Integration. In Proc. of the 6th Intl” Conf. on the Principles of
Knowledge Representation and Reasoning (KR’98), pages 2-13, 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Information Integra-
tion: Conceptual Modeling and Reasoning Support. In Proc. of Intl” Conf. on Cooperative
Information Systems (CooplS’98), 1998.

D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Schema and Data
Integration Methodology for DWQ. Technical Report DWQ-UNIROMA-004, Foundations
of Data Warehouse Quality (DWQ), 1998.

D. Calvanese, M. Lenzerini, and D. Nardi. Description Logics for Conceptual Data Model-
ing. In J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems,
pages 229-263. Kluwer Academic Publishers, 1998.

D. Calvanese, M. Lenzerini, and D. Nardi. Unifying Class-based Representation Formalisms.
Journal of Artificial Intelligence Research, 11:199-240, 1999.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proc. of Intl.
Conf. on Database Theory (ICDT’97), LNCS 1186, Delphi, Greece, 1997.

C. De Castro, F. Grandi, and M. R. Scalas. Schema Versioning for Multitemporal Relational
Databases. Information Systems, 22(5):249-290, 1997.

R. T. Snodgrass (ed.), I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,
F. Grandi, C. S. Jensen, W. Kifer, N. Kline, K. Kulkarni, T. Y. Cliff Leung, N. Lorentzos,
J. F. Roddick, A. Segev, M. D. Soo, and S. M. Sripada. The TSQL2 Temporal Query
Language. Kluwer Academic Publishers, 1995.

E. Franconi, F. Grandi, and F. Mandreoli. A Semantic Approach for Schema Evolution and
Versioning in Object-Oriented Databases. In Proc. Intl’” Conf. on Deductive and Object-
Oriented Databases (DOOD 2000), 2000.

E. Gradel, M. Otto, and E. Rosen. Two-variable Logic with Counting is Decidable. In
Proc. 12th Annual IEEE Symposium on Logic in Computer Science, 1997.

F. Grandi. On Expressive Number Restrictions in Description Logics. In Proc. of the Intl’
Workshop on Description Logics (DL’01). Preliminary version available via anonymous ftp
as ftp://ftp-db.deis.unibo.it/pub/fabio/TR/CSITE-07-01.pdf, 2001.

19

[19] F. Grandi, F. Mandreoli, and M. R. Scalas. A Generalized Modeling Framework for Schema
Versioning Support. In Proc. of 11th Australasian Database Conf. (ADC 2000), January
2000.

[20] 1. Horrocks, U. Sattler, and S. Tobies. Practical Reasoning for Very Expressive Description
Logics. Logics Journal of the IGPL, 3(3):239-263, 2000.

[21] T. Millstein, A. Levy, and M. Friedman. Query Containment for Data Integration Sys-
tems. In Proc. of the 19th ACM SIGACT SIGMOD SIGART Symposium on Principles of
Database Systems (PODS’00), pages 67-75, 2000.

[22] L. Pacholski, W. Szwast, and L. Tendera. Complexity of Two-variable Logic with Counting.
In Proc. 12th Annual IEEE Symposium on Logic in Computer Science, 1997.

[23] J. F. Roddick, F. Grandi, F. Mandreoli, and M. R. Scalas. Beyond Schema Versioning: a
Flexible Model for Spatio-Temporal Schema Selection. Geoinformatica, 5(1):33-50, March
2001.

[24] J. F. Roddick and R. T. Snodgrass. Schema Versioning. In The T'SQL2 Temporal Query
Language, pages 427-449. Kluwer Academic Publishers, 1995.

[25] S. Tobies. The Complexity of Reasoning with Cardinality Restrictions and Nominals in
Expressive Description Logics. Journal of Artificial Intelligence Research, 12, 2000.

[26] The Extensible Markup Language (XML) Home Page, W3C Consortium.
http://www.w3.org/XML/.

A Complex Roles for Free in ALCQZO

As a matter of fact, the Description Logic we consider here should be better named ALCQZOB,
that is ALCQZO extended with Boolean constructors (e.g. union, intersection, ...) on atomic
roles, that is extended with the constructs defined below:

R,S— RUS (RUS)E = {(i,5) € AT x AT | RZ(4,) vV §Z(i,5)}
ROS (RN ST = {(,j) € AT x AT | R (i,5) A ST (i,5)}
-R (-R)F = AT xAT\R?
R= S (R= 9T = {(i,j) € AT x AT | =R*(i,5) v S*(i,5)}
R\ S (R\S)* = {(i,j) € AT x AT | R*(i,5) A =S (5,4)}

We show that the addition of the new constructs does not change the decidability of the Logics
which remains in NEXPTIME. As a matter of fact, concept satisfiability, concept subsumption
and knowledge base satisfiability in ALCOZO can be reduced to checking the consistency of
an ALCQI-T¢Box [25], by substituting (as we did in Sec. 5) every nominal o with a “normal”
ALCQT concept O with additional cardinality restrictions {(< 10),(=> 10)} in order to force
its interpretation to be a singleton. Obviously, starting from an extended ALCQZO knowledge
bases, the new role constructs will also be present in the resulting extended ALC QZ-T ~Box.
However, also the extended ALC QZ-T Box can still be translated into C? (viz. the two-variable
FOL fragment with counting quantifiers [4]), by following the translation rules listed in [25, Fig.

20

2], plus the following rules for cardinality restrictions involving the new constructs:

T,(>n(RUS)C) = 3"y.((RayV Szy) A T,(C))
U, (>n(RNS)C) = F2"y.(Rzy A Szy A ¥,(C))
Uo(>n(~R)C) = 3y (~Ray AT, (C))
Tu(>n(R=8)C) = F2y.((~RayV Szy) A T,(C))
Ty (>n(R\S)C) = F=".(Rwy A -Szy AT, (C))

Obviously the result of the translation (obtained in linear time) will still be a sentence in
C? and, thus, its satisfiability will still be decidable in NEXPTIME [17, 22]. Moreover, the
addition of the new role constructors makes our Description Logics more expressive than the
basic ALCQZO and, thus, it cannot be less complex; since it shown in [25] that ALCQTO
reasoning is NEXPTIME-complete, also our ALCQZOB extension has the same complexity (the
translation into C? yields an optimal solution).

21

