D21

Integrazione, Warehousing e Mining di sorgenti eterogenee
Programma di ricerca (cofinanziato dal MURST, esercizio 2000)

Use of ontologies and extensional inter-schema
properties for integration

DOMENICO BENEVENTANO, SONIA BERGAMASCHI, FRANCESCO GUERRA, SILVANA
CASTANO, MAURIZIO VINCINI

D1.R2 30 Aprile 2001

Sommario

In this report we detail and extend the method described in the previous project report
D1.R1 [10], evidencing the use of ontologies and extensional inter-schema properties in the
integration process.

With respect to project report D1.R1 we take into account the extensional intra and inter-
schema properties by introducing some examples of extensional relationships and integrity con-
straint rules. Then we show as these properties influence the integration process by allowing, in
particular, to infer new relationships and to force the inclusion of a class in a cluster.

From a teoretical point of view, we introduce the syntax and the semantics of the OLCD
Description Logic and its inference capabilities. Then we describe how ODL;s source schema
descriptions are translated into OLCD descriptions. Moreover we present a formalization of
the extraction phase of the lexicon-derived inter-schema relationships based on the WordNet
database.

Tema Tema 1: Applicazioni per basi di dati su Internet e Intranet
Codice D1.R2

Data 30 Aprile 2001

Tipo di prodotto Rapporto tecnico

Numero di pagine 18

Unita responsabile MO
Unita coinvolte MI, MO

Autore da contattare | Domenico Beneventano

Dipartimento di Scienze dell'Ingegneria
Universita di Modena e Reggio Emilia
via Vignolese 905

41100 Modena, Italia
beneventano.domenico@Qunimo.it

Use of ontologies and extensional inter-schema properties for
integration

Domenico Beneventano, Sonia Bergamaschi, Francesco Guerra, Silvana Castano,
Maurizio Vincini

30 Aprile 2001

Abstract

In this report we detail and extend the method described in the previous project report
D1.R1 [10], evidencing the use of ontologies and extensional inter-schema properties in the
integration process.

With respect to project report D1.R1 we take into account the extensional intra and
inter-schema, properties by introducing some examples of extensional relationships and in-
tegrity constraint rules. Then we show as these properties influence the integration process
by allowing, in particular, to infer new relationships and to force the inclusion of a class in
a cluster.

From a teoretical point of view, we introduce the syntax and the semantics of the OLCD
Description Logic and its inference capabilities. Then we describe how ODLjs source schema
descriptions are translated into OLCD descriptions. Moreover we present a formalization of
the extraction phase of the lexicon-derived inter-schema relationships based on the WordNet
database.

1 Introduction

The report is organized as follows. In section 2.1 we present the ODL;s language and in sec-
tion 2.2 we consider the running example introduced in project report D1.R1 by reporting the
complete ODL;s schemas representation of the ED and FD sources. In section 2.3 we introduce the
syntax and the semantics of the OLCD Description Logics and its inference capabilities. Then
in section 2.4 we describe how ODLjs source schema descriptions are translated into OLCD
descriptions.

In section 3 we consider and extend the method introduced in project report D1.R1 by
explaining the use of OLCD in the Common Thesaurus construction with particular reference
to extensional knowledge.

In section 4 we describe the theoretical foundations of the techniques to discover affinity
inter-schema relationships between ODL;s classes in different schemas.

2 Preliminaries: ODL;3 and OLCD

2.1 The ODL;: language

For a semantically rich representation of source schemas and object patterns associated with
information sources to be integrated, we introduce an object-oriented language, called ODLjs.
According to recommendations of ODMG and to the diffusion of I*/POB [7, 5], the object data
model ODL;js is very close to the ODL language. ODLys is a source independent language used
for information extraction to describe heterogeneous schemas of structured and semistructured
data sources in a common way.

ODL;3 introduces the following main extensions with respect to ODL:

Union constructor. The union constructor, denoted by union, is introduced to express alter-
native data structures in the definition of an ODL;s class, thus capturing requirements of
semistructured data. An example of its use will be shown in the following.

Optional constructor. The optional constructor, denoted by (?), is introduced for class at-
tributes to specify that an attribute is optional for an instance (i.e., it could be not spec-
ified in the instance). This constructor too has been introduced to capture requirements
of semistructured data. An example of its use will be shown in the following.

Integrity constraint rules. This kind of rule is introduced in ODL;3 in order to express, in
a declarative way, if then integrity constraint rules at both intra- and inter-source level.

Intensional relationships. They are terminological relationships expressing inter-schema knowl-
edge for the source schemas. Intensional relationships are defined between classes and
attributes, and are specified by considering class/attribute names, called terms. The fol-
lowing relationships can be specified in ODLys:

e SYN (Synonym-of), defined between two terms ¢; and ¢;, with t; # ¢;, that are con-
sidered synonyms in every considered source (i.e., ¢; and t; can be indifferently used
in every source to denote a certain concept).

e BT (Broader Terms), or hypernymy, defined between two terms ¢; and ¢; such as ¢;
has a broader, more general meaning than ¢;. BT relationship is not symmetric. The
opposite of BT is NT (Narrower Terms), or hyponymy.

e RT (Related Terms), or positive association, defined between two terms ¢; and ¢; that
are generally used together in the same context in the considered sources.

An intensional relationships is only a terminological relationship, with no implications
on the extension/compatibility of the structure (domain) of the two involved classes (at-
tributes). Consequently, our notion of intensional relationships is different from the one
proposed by Catarci and Lenzerini [4], where an intensional relationships has some exten-
sional import.

Extensional relationships. Intensional relationships SYN, BT and NT between two classes C
and Cs may be “strengthened” by establishing that they are also eztensional relationships.
Consequently, the following extensional relationships can be defined in ODLjs:

e () SYNgy Co: this means that the instances of C; are the same of Cs.

o (] BTgy Co: this means that the instances of C; are a superset of the instances of
Cs.

e (1 NT., Co: this means that the instances of C are a subset of the instances of Cs.

Moreover, extensional relationships “constrain” the structure of the two classes C7 and Cy,
that is C1 NTez¢ Cy is semantically equivalent to an “isa” relationship. As to summarize:

e an extensional relationship C1 NTez: Co is equivalent to an “isa” relationship C7 ISA
C5 plus an intensional relationships Cy NT Cy;

e an extensional relationship C7 BT, Co is equivalent to an “isa” relationship Cy ISA
C1 plus an intensional relationships C; BT Co;

¢ an extensional relationship Cy SYNg;s Co is equivalent to two “isa” relationships C
1SA Cy and C5 1SA C; plus an intensional relationships C7 sYN Cb.

An “isa” relationships C; 1SA (5 is expressible in ODL;s by the following integrity con-
straint rule:

rule Rule2 forall X in C1 then X in C2

Mapping Rules. This kind of rule is introduced in ODLys in order to express relationships
holding between the integrated ODL}s schema description of the information sources and
the ODL;3 schema description of the original sources.

The extraction process has the goal of translating object patterns and source schemas into
ODL;3 descriptions. Translation is performed by a wrapper. Moreover, the wrapper is also re-
sponsible for adding the source name and type (e.g., relational, semistructured). The translation
into ODL;3, on the basis of the ODL;s syntax (see Appendix A) and of the schema definition
is performed by the wrapper as follows. Given a relation of a relational source or a pattern
(I, A), translation involves the following steps: i) an ODL;3 class name corresponds to the rela-
tion name or to [, respectively, and ii) for each relation attribute or label I’ € A, an attribute
is defined in the corresponding ODL;s class. Furthermore, attribute domains are extracted.
Structure extraction can be performed as proposed in [2, 9].

2.2 Running example

In this section we consider the running example introduced in project report D1.R1. We con-
sider two sources in the Restaurant Guide domain, storing information about restaurants. The
Eating Source guidebook (ED) is semistructured and contains information about fast foods of
the west coast, their menu, quality, and so on. The Food Guide Database (FD) is a relational
database containing information about USA restaurants from a wide variety of publications
(e.g., newspaper reviews, regional guidebooks). The schema of this source is composed of four
relations, namely, Restaurant, Bistro, Person, and Brasserie. Information related to restau-
rants is maintained into the Restaurant relation. Bistro instances are a subset of Restaurant
instances and give information about the small informal restaurants that serve wine. Each
Restaurant and Bistro is managed by a Person. Information about places where drinks and
snacks are served on are stored in the Brasserie relation.

In the following we report the complete ODL;s schemas representation of the ED and FD
sources.

Eating_Source (ED):

interface Fast-Food interface Address
(source semistructured (source semistructured
Eating_Source) Eating_Source)

{ attribute string name; { attribute string city;
attribute Address address; attribute string street;
attribute integer phone?; attribute string zipcode;};
attribute set<string> specialty; union
attribute string category; { string;};
attribute Restaurant nearby?;
attribute integer midprice?;
attribute Owner owner?;};

interface Owner (source semistructured Eating_Source)
{ attribute string name;

attribute Address address;

attribute string job;};

Food_Guide_Source (FD):

interface Restaurant interface Person
(source relational Food_Guide (source relational Food_Guide
key r_code key pers_id)
foreign_key(pers_id) { attribute integer pers_id;
references Person) attribute string first_name;
{ attribute string r_code; attribute string last_name;
attribute string name; attribute integer qualification;};
attribute string street;
attribute string zip_code;
attribute integer pers_id;
attribute string special_dish;
attribute integer category;
attribute integer tourist_menu_price;};
interface Bistro interface Brasserie
(source relational Food_Guide (source relational Food_Guide
key r_code key b_code)
foreign_key(r_code) { attribute string b_code;
references Restaurant, attribute string name;
foreign_key(pers_id) attribute string address;};
references Person)
{ attribute string r_code;
attribute set<string> type;
attribute integer pers_id;};

To represent object patterns in ODL;s, union and optional constructors are used. In partic-
ular, the union constructor is used to represent object patterns describing heterogeneous objects
in the source. An example of use of the union constructor in the ODL;s class representing the
Address pattern of the ED source is shown in Figure 1. The semantics of the union construc-
tor and of optional attributes in ODL;3 will be discussed in the next section, using the OLCD
Description Logics.

interface Address
(source semistructured
Eating_Source)

{ attribute string city;
attribute string street;
attribute string zipcode; };

union

{ string; };

Figure 1: An example of union constructor in ODLs

2.3 The OLCD Description Logic

ODL;s descriptions are translated into OLCD (Object Language with Complements allowing
Descriptive cycles) descriptions in order to perform Description Logics inferences that will be
useful for semantic integration.

In this section, we give the syntax and the semantics of OLCD. Readers interested in a more
formal account can refer to [1].

2.3.1 Types and Schemas

We assume a countable set of symbols A of attribute names (denoted by a,ai,as,...) and we
assume a countable set N of type names (denoted by N, N1,No, ...), which includes the set
B = {Integer, String, Bool, Real} of base-type designators (which will be denoted by B) and
the symbols T, L. A path p is either the symbol €, or a dot-separated sequence of elements
e1.ey. -+ .ey, where e; € AU{A,3} (i =1,... ,n). € denotes the unique path of length 0. Let
W denote the set of all paths.

S(A,N) denotes the set of all finite type descriptions (denoted by S, S1, Sa, ...), also briefly
called types, over given A, N, obtained according to the following abstract syntax rule, where
a; # a; for i # j (in the sequel p, p1, po, ... , denote a path, d denotes a base value, denotes
a relational operator):

S— N | Sy U Sy | S1 1M Sy | —|S| {S}V | {S}E | [a1:S1,...,ak:Sk] | AS|p9d‘pT

T denotes the top type, L denotes the empty type, {}v and [| denote the usual type construc-
tors of set and record (tuple), respectively. The {S}5 construct is an existential set specification,
where at least one element of the set must be of type S. The construct M stands for intersection,
the construct LI stands for union, the construct — stands for complement, whereas /A constructs
class descriptions, i.e., is an object set forming constructor. pfd, pt represent atomic predicates:
pld is a range restriction and pT expresses path undefinedness.

Given a set of type descriptions S(A,N), a schema o over S(A,N) is a total function
o: N\(BU{T,L}) — S(A,N), which associates type names to descriptions. o is partitioned into
two functions: op, which introduces the description of primitive type names whose extensions
must be explicitly provided by the user; and oy, which introduces the description of virtual type
names whose extensions can be recursively obtained from the extension of the types occurring
in their description.

In OLCD cyclic type names are allowed: in fact, since a type name may appear in type
descriptions, we can have circular references, that is, type names which make direct or indirect
references to themselves. Giving a type as set semantics to type descriptions, Description Logics,
and thus OLCD, allows one to provide relevant reasoning techniques: computing subsumption
relations between types (i.e. “is-a” relationships implied by type descriptions), deciding equiva-
lence between types, and detecting inconsistent (i.e., always empty) types.

2.3.2 OLCD : Interpretations and Database Instances

We assume the union of the integers, the strings, the booleans, and the reals as the set D of base
values. To build complex values, we further assume a countable, set disjoint from D, of object
identifiers (denoted by 0,01,02,...). The set V of all values over O is defined as the smallest

set containing D and O, such that, if vy, ... ,v, are values, then the set {vi,... ,v,} is a value,
and a partial function ¢t: A — {v1,... ,vp} is a value. The function ¢ is the usual tuple value;
the standard notation [a1: v1,... ,ap: vp] will be henceforth used.

Let =,#,>,<,>,< be the equality, inequality and total order relations, denoted by @,
defined as usual on D. Equality and inequality can be extended from D to all V: the equality
operator (=) has the meaning of identity, i.e., two objects are equal if they have the same
identifier, two sets are equal iff they have equal elements, two tuples, say vq = [a1: v1,... ,ap: Vp)
and vy = [a]: vy,-.. ,ag: vg], are equal if they have the same attributes and equal attribute labels
are mapped to equal values. Object identifiers are assigned values by a total value function &
from O to V.

Let W denote the set of all paths. Given a set of object identifiers O and a value function
8, let J: W — 2V*V 4 function defined as follows:

e empty path: J[e] = {(’U,U) €V x V}

e single element path: J[a] = {(’Ul,’Ug) eEVxVi]v=1[..,a: vg,...]}
JA] = {(o,v) €O xV|do) :’U}

e multiple element path: Jej.ez. - .ey] = JTle1] o Jlex] o--- 0 Tey]
where o is the symbol of function composition.

Notice that, for all p, J[p] is undefined on set values. Let v be a value and p be a path. By
J[p](v) we mean the unique value (when it exists) reachable from v following p, that is the value
of the partial function J[p] in v.

Let Tp be the (fixed) standard interpretation function from B to 2P. For a given object
assignment ¢, each type expression S is mapped to a set of values (its interpretation). An
interpretation function is a function Z from S to 2V satisfying the following equations:

I[T| =V
Z[1]=10
1[B] = In[B]

ISty ={M | M C I[S]}
I{S}s] = {M | M NZ[S] # 0}

I[[al LS,y 5,,]] = {t: A > V| Ha:) € Z[S],1 <i < p}

Z1S51 N %] = I[S1] N I[S,]
Z1S1 U Sy = I[S1] U Z[S]
I[-8] = V\ Z[8]

T[AS] = {o € 0‘5(0) = I[S]}

I((pod)]) = {v € V | Tlpl(v)0d}
I[pt)] = {v €V [v ¢ dom Jlpl)

Note that the interpretation of tuples implies an open world semantics for tuple types similar
to the one adopted by Cardelli [3], and that (p1) selects objects which do not have the path
p. It should be noted than an interpretation does not necessarily imply that the extension of a
named type is identical to the type description associated with the type name via the schema
o. For this purpose, we have to further constrain the interpretation function: An interpretation
function 7 is a legal instance of a schema o iff the set O is finite, and for all N € N:

Z[N] C Z[op(N)] if N € dom op
I[N] =Zloy(N)] if N € dom oy

From the above definition, we see that the interpretation of a primitive type name s included in
the interpretation of its description, while the interpretation of a virtual type is the interpretation
of its description. In other words, the interpretation of a primitive type name has to be provided
by the user, according to the given description, while the interpretation of a virtual type name is
drawn from its definition and from the interpretation of primitive type names, thus corresponding
to a view in database context.

Given a type S of a schema o, we say that S is consistent if and only if there is a legal
instance Z of o such that Z[S] # 0. Given two types Si, Sz of a schema o, we say that S;
subsumes Sy iff Z[S1] D Z[Sy] for all legal instances Z of 0. Consistency and subsumption can
be reduced to each other, according to the following rules: S is subsumed by So iff S; 1 -5,
is inconsistent, and S is consistent iff it is not subsumed by L. The consistency problem is
PSPACE-hard; in [1], an algorithm for checking the consistency of a type (which can also be
used for subsumption computation), based on the tableauz calculus, is given.

2.4 ODLj; to OLCD translation

In this section, we describe how ODLjs source schema descriptions are translated into OLCD
descriptions.

ODL;; classes. In general, a ODLs class is translated into a OLCD primitive class in a simple
way: each attribute of the ODL;3 class becomes an attribute of the corresponding OLCD
class.

For example, the Restaurant ODL;s class is translated as follows:

op(ES.Restaurant)=/\r_code: String, name: String, street: String,
zip_code : String, pers_id : Integer, special_dish : String,
category : Integer, tourist menu price : Integer |

Some aspects of an ODLjs class declaration, such as key r_code in the Restaurant ODLj3
class, are not translated into OLCD, but will be used in the semantic information integra-
tion.

Union constructor. The union constructor of ODL;s is translated using the construct LI of
OLCD; for example, the Address pattern of figure 1 is translated in OLCD as follows:

op(ES.Address)=A (String U

[city: String, street: String, zipcode: String])

Optional constructor. The construct LI is also used to translate optional attributes into
OLCD. In fact, an optional attribute att specifies that a value may exist or not for a given
instance. This fact is expressed in OLCD as the union between the attribute specification
(with its domain) and attribute undefinedness, denoted by?t operator: ([attl: domaini] L
att1?). For example, in the Fast _Food interface, the optional attributes are translated as
follows:

op(ES.Fast_Food) = A ([name : String, address : ES.Address,
specialty : {String}, category : String | 1
([phone : Integer | Ll phonet) M
([nearby : ES.Fast_Food | Ll nearbyt) M

([midprice : Integer | LI midpricet) M

([

owner : ES.Owner | Ll owner?)

Integrity constraint rules. An if then integrity constraint rule is integrated into an OLCD
class description, by using the I, U and — constructs. For example, the rule:

rule Rulel forall X in Restaurant :
(X.category > 5) then X.tourist_menu_price > 100;

is added to the ES.Restaurant description as follows:

op(ES.Restaurant) = A ([r_code : String, name : String, street : String,

zip_code : String, pers_id : Integer, special _dish : String,
category : Integer, tourist menu price : Integer | N

(—(category > 5) U (tourist menu price > 100)))
Then, in our framework, integrity constraints are statements about the world and not

about the contents of the database. In other words, a schema is composed by classes +
integrity constraints and we check the consistency of such a schema.

Intensional relationships. They are not translated.

Extensional relationships. An “isa” relationships C7 1SA (5 related to an Extensional rela-
tionships and expressed in ODLys by the rule:

rule Rule2 forall X in C1 then X in C2

is integrated in the C class description, by using the M construct: op(Cy) = Cy ...

Mapping Rules. They are not translated.

3 Reasoning about ODL; schema descriptions to build a Com-
mon Thesaurus

This section repeat and extend the method adopted to buil the Common Thesaurus presented
in project report D1.R1.

To develop intelligent techniques for semantic integration, inter-schema knowledge between
information sources in the considered domain has to be identified and properly represented. For
this purpose, we construct a Common Thesaurus of terminological intensional and extensional
relationships, describing inter-schema knowledge about ODLys classes and attributes of source
schemas. The Common Thesaurus provides a reference on which to base the identification of
ODL;s classes candidate to integration and subsequent derivation of their global represention.

In the Common Thesaurus, we express inter-schema knowledge in form of terminological
relationships (SYN, BT, NT, and RT) and extensional relationships (SYNegzt, BTegzt, and NTeg
between classes and/or attribute names.

The Common Thesaurus is constructed through an incremental process during which rela-
tionships are added in the following order:

1. schema-derived relationships
2. lexical-derived relationships

3. designer-supplied relationships
4. inferred relationships

All these relationships are added to the Common Thesaurus and thus considered in the subse-
quent phase of semantic information integration (see next section). Terminological relationships
defined in each step hold at the intensional level by definition. Furthermore, in each of the above
step the designer may “strengthen” a terminological relationships SYN, BT and NT between two
classes C1 and Cs by establishing that they hold also at the extensional level, thus defining also
an extensional relationship. The specification of an extensional relationship, on one hand, im-
plies the insertion of a corresponding intensional relationship in the Common Thesaurus and, on
the other hand, enable subsumption computation (i.e., inferred relationships) and consistency
check between two classes C7 and Cs.

3.1 Schema-derived relationships

In this step, we extract terminological and extensional relationships holding at intra-schema
level by analyzing each ODL;s schema separately. In particular, intra-schema RT relationships
are extracted from the specification of foreign keys in relational source schemas.

Example 3.1 Consider the ED and FD sources. A subset of intra-schema relationships auto-
matically extracted is the following:
(ED.Fast-Food RT ED.0Owner),
(ED.Fast-Food RT ED.Address),
(ED.Fast-Food RT ED.Fast-Food),
(FD.Restaurant RT FD.Person),
(FD.Bistro RT FD.Person).

When a foreign key is also a primary key both in the original and in the referenced relation,
a BT/NT relationship is extracted at the extensional level as in the case of (FD.Bistro NTeyy
FD.Restaurant).

3.2 Lexical-derived inter-schema relationships

In this step, terminological and extensional relationships holding at inter- schema level are
extracted by analyzing ODLs schemas together. The extraction of these relationships is based
upon the lexical relations holding between classes and attributes names, deriving from the mining
of used words. This is a kind of knowledge which is not based on the rules of a data definition
language but derives from the name assigned by the designer. It is a designer’s task to assign
descriptive/meaningful names or, at least, correctly interpretable names. An interpretation
uncertainty is therefore inherent to the language ambiguity.

Anyway knowledge associated with schema names is an opportunity that must be exploited
to extract relationships. As it is almost impossible to carry out this task manually when the
number and dimensions of schema grows, it was decided to experiment the use of WordNet [8]
lexical system to extract intensional inter-schema relationships and propose them to the designer.

The WordNet database

WordNet is a lexical database which was developed by the Princeton University [8] Cognitive
science Laboratory. WordNet is inspired by current psycholinguistic human lexical memory
connected theories and it is regarded as the most important researcher’s available resource in
the fields of computational linguistics, textual analysis and other related areas. The lexical
Wordnet database, in the current 1.6 version has 64089 lemma which are organized in 99757
synonym sets (synset).

The starting point of lexical semantics is the constatation of the existence of a conventional
association between the words form (i.e., the way in which they are pronounced or written) and
the concept/meaning they express; such association is of the many-to-many kind, giving rise to
the following properties:

Synonymy: property of a concept/meaning which can be expressed with two or more words.
A synonyms group is named synset. Note that one and only synset exists for each con-
cept/meaning.

Polysemy: property of a single word having two or more meanings.

The correspondence between the words form and their meaning is synthesized in the so called
Lezical Matriz M, in which the words meaning are reported in rows (hence each row represents
a synset) and columns represent the words form (form/base lemma).

Each matrix element is a(entry), e = (f, m) definition, where f is the base form and m (mean-
ing) is the meaning counter; for example (address, 2) refers to the address where a person or
a fast-food can be found; while (address, 1) refers to a computer address in the informatics
sphere. From here on the base form and the meaning of an element e = (f, m) will be respec-
tively indicated with e.f and e.m. An element of the M matrix may be null or indefinite. As

only one M row is associated to a synset, from here on we will use s € 8 as a M row indicator.
In other words the non null elements of the M|s] row, represent each and every s element.

In the same way, as only one M column is associated to a base form, from here on we will
use the base forms as M columns index.

3.2.1 Semantic relationships between schema terms

With the concept of term we associate a definition to each class or attribute name. A term is
formed by the t = (n,e) couple, where n indicates a class or attribute name, and e indicates a
definition. A class or attribute name n are qualified as follows a class name is qualified by the
name of the source schema to whom the class belongs
(source name.class name), an attribute name is moreover qualified with the name of the class
to whom it belongs
(source name.class name.attribute name). The classes and attributes names set is indicated
by N; the set of words in N is indicated by I. The relation between synset defined in Wordnet are
the starting point to define semantic relations between words. Various relations are obtainable
with the WordNet database; some of them are between single words others are between synset.
In this context we will use the following relations between synset: Synonymy, Hypernymy,
Hyponymy, Olonymy, Meronymy and Correlation! As hyponymy and meronymy are inverse
relations to hypernymy and olonymy, respectively, the set of relations between synset is the
following;:

W= {Synonymya Hypernymy, Olonymya Carrelation}-
Given the synset 8 set and the W relations set, The function ¢ : § x W — 23 is inserted giving
for each synset s the set of synset associated through the r € W relation:

d(s,r) ={s' | s € 8,r e W, (s'rs)}

Given a synset S set and a Iset of words, the functiond : § — 2! is defined associating, on the
basis of the lexical matrix, a set of words to a given synset :

H(s) ={t = (n,e)|n € N,M[s|[t.e.f] = t.e}

We can hence obtain the relations between the words using the relations existing between the
synset that contain those words. Given a set of words T, the set of relations between words R,
R CIxW x1,is defined as follows:

R = {{tirt;)|r € W, ti,t; € 1,3As: t; € H(s),t; € (s,7),t: £ 1;}

The relations deriving from are proposed as semantic relations to be inserted in the Common
Thesaurus according to the following correspondence:

Synonymy: corresponds to a SYN relation.

Hypernymy: corresponds to a BT relation.

Olonymy: corresponds to a RT relation.

Correlation: corresponds to a RT relation.

Example 3.2 Consider the ED and FD sources. The relationships derived using WordNet are
the following:

(FD.Restaurant BT FD.Brasserie),

(FD.Person BT ED.Owner),

(ED.Owner.name BT FD.Person.first name),

(ED.Owner.name BT FD.Person.last name),

(ED.Fast-Food.name BT FD.Person.first name),

(ED.Fast-Food.name BT FD.Person.last name).

!Correlation is a relation which links 2 synset sharing the same hypernym, i.e. the same ”father”.

10

Note that, sYN relationships are also extracted for the attributes having the same name in the
two sources, which are omitted from previous set for the sake of brevity.

3.3 Designer-supplied inter-schema relationships

In this step, new relationships can be supplied directly by the designer, to capture specific do-
main knowledge about the source schemas (e.g., new synonyms).

This is a crucial operation, because the new relationships are forced to belong to the Common
Thesaurus and thus used to generate the global integrated schema. This means that, if a non-
sense or wrong relationship is inserted, the subsequent integration process can produce a wrong
global schema. The following Relationship validation section shows how our system help the
designer in detecting wrong relationships.

Example 3.3 In our example, the designer supplies the following relationships for classes and
attributes:

(ED.Fast-Food SYN,; FD.Restaurant),

(ED.Fast-Food.category BT FD.Bistro.type),

(ED.Fast-Food.specialty BT FD.Bistro.special dish).

The definition of the relationship (ED.Fast-Food SYNg,; FD.Restaurant) by the designer
implies the automated definition of the relationship (ED.Fast-Food SYN FD.Restaurant) in the
Common Thesaurus.

3.4 Relationships validation

In this step, ODB-Tools is employed to validate intensional relationships between attribute
names and extensional relationships between class names.

The validation of intensional relationships between attribute names is based on the compat-
ibility of the domains associated with the attributes. This way, valid and invalid intensional
relationships are distinguished. In particular, let a; = (n;, d;) and ay = (ng, dy) be two attributes,
with a name and a domain, respectively. The following checks are executed on intensional rela-
tionships defined for attribute names in the Common Thesaurus:

e (ny SYN ng): the relationship is marked as valid if d; and d, are equivalent, or if one is a
specialization of the other;

e (n; BT ng): the relationship is marked as valid if d; contains or is equivalent to dg;
e (ny NT ng): the relationship is marked as valid if d; is contained in or is equivalent to d,.

When an attribute domain d; (dy) is defined using the union constructor, as in the Address ex-
ample (see Figure 1), a valid relationship is recognized if at least one domain d; (d;) is compatible
with dg (dy).

Example 3.4 Referring to our Common Thesaurus resulting from Examples 3.1 to 3.3, the
output of the validation phase is the following (for each relationship, control flag [1] denotes a
valid relationship while [0] an invalid one):

(ED.Fast-Food.category BT FD.Bistro.type) [0]
(ED.Owner .name BT FD.Person.first name) [1]
(ED.Owner.name BT FD.Person.last name) 1]
(ED.Fast-Food.specialty BT FD.Bistro.special dish) [1]
(ED.Fast-Food.name BT FD.Person.first name) [1]

11

(ED.Fast-Food.name BT FD.Person.last _name) 1]
(ED.Fast-Food.category SYN FD.Restaurant.category) [0]

As an extensional relationship between two classes C; and Cj is integrated in the description
of the class C, its validation is performed by checking the consistency of the class C;. For
example, the extensional relationship (FD.Restaurant BT.;; FD.Bistro) stated before by the
designer is expressed in the FD.Bistro class description as follows:

op(FD.Bistro) = FD.Restaurant 1

A [r_code : String, type : String, pers_id : Integer]

Since the FD.Bistro class description is consistent, the relationship between FD.Bistro and
FD.Restaurant is validated. On the other hand, the extensional relationship (ED.Fast-Food
SYN,;¢ FD.Restaurant) is rejected, as the class description:

op(ED.Fast-Food) = FD.Restaurant ...
is inconsistent (the attribute category is defined in both the classes but on disjoint domains).
In the presence of integrity rules less intuitive incoherencies may arise.

In this case, the designer modifies his statement and only the terminological relationship

(ED.Fast-Food SYN FD.Restaurant) is kept in the Common Thesaurus.

3.5 Inferring new relationships

In this step, inference capabilities of ODB-Tools are exploited to infer new relationships, in order
to set up a rich Common Thesaurus to support the identification of semantically similar ODLj3
classes in different sources, as will be shown in next section.

Example 3.5 Relationships inferred in this step are the following:
.Bistro RT ED.Owner),

.Bistro RT ED.Address),

.Brasserie RT ED.Address),

.Brasserie RT FD.Person),

.Restaurant RT ED.Address),

.Fast-Food BT FD.Brasserie),

.Fast-Food BT FD.Bistro),

.Restaurant RT ED.Fast-Food),

.Restaurant RT ED.Owner.)

e B |
O U oo

T Mo
O O o

P e et e e e et e et
|
[w)

L
[w)

Note that, due the simplicity of the adopted example, many of the discovered relationships
are trivial. In order to show an example of inference due to extensional relationships, suppose
to introduce a new pattern into the Eating Source:

New-Food-pattern = (New-Food,{ name,specialty,category*})

The related ODLys class is :

interface ED.New-Food
(source semistructured Eating_Source)

{ attribute string name;
attribute set<string> specialty;
attribute string category*; };

Moreover, suppose that the designer states the following extensional relationship:
(ED.New-Food BT.;; FD.Restaurant).

This extensional relationship is validated as consistent; in fact the category attribute is optional

in ED.New-Food. By exploiting subsumption computation ODB-Tools obtains the following

inferred relationship: (ED.New-Food BT, FD.Bistro).

12

The inferred relationships obtained by subsumption computation are less trivial at the pres-
ence of integrity constraint rules and/or views (which are not considered in this report). In
ODL;3 we can express, in a declarative way, if then integrity constraint rules at both intra- and
inter-source level. For example, let us consider the following inter-source integrity constraint
rules:

rule Rule2 forall X in FD.Restaurant :
(X.pers_id in FD.Person) then X in ED.Fast-Food;

By exploiting subsumption computation ODB-Tools obtains the following inferred relation-
ship: (FD.Bistro NT¢;; ED.Fast-Food).
In fact, we have (FD.Bistro NT¢,;; FD.Restaurant) (see subsection 3.1) and, due to the spec-
ification of foreign keys,

foreign_key(pers_id) references Person

in the FD.Bistro source, we have that the FD.Bistro class satisfies the antecedent of the
integrity rules Rule2, then FD.Bistro is a ED.Fast-Food.

4 Exploiting ontology knowledge to discover affinity relation-
ships among ODL;s classes

In this section, we describe the theoretical foundations of the techniques to discover affinity
inter-schema, relationships between ODL;s classes in different schemas. Affinity relationships
express the fact that ODL;s classes are semantically related, that is, they express the same
or similar information in diverse schemas and, as such, they can be integrated. Discovering
affinity relationships is based on two functions: a similarity function, called AFFINITY (), and
a clustering function, called GROU P(). The purpose of the similarity function is to determine
the level of semantic similarity of pairs of ODL;s classes in their respective schemas. The
purpose of the clustering function is to group all ODL;s classes that are semantically similar in
the analyzed schemas and group them into clusters. In the following, we describe the theoretical
foundations of these two functions. Techniques for their implementation are described in [10].

4.1 Affinity function

Let C be the set of ODL;3 classes to be analyzed. The AFFINITY () function is defined as fol-
lows: AFFINITY() : C x C — [0,1]

AFFINITY () is evaluated on ODL;s classes with respect to comparison features. Different
kinds of comparison features can be selected for ODLjs classes (e.g.,names of the classes, at-
tributes). Let us denote by CF(c;) the set of comparison features of a ODL;s class ¢;. Not
all possible pairs of comparison features of two ODL;s classes are relevant for the evaluation
of AFFINITY (), but only the pairs that have a semantic correspondence. Two comparison
features have a semantic correspondence if they describe the same real-world information. Let
cf € CF(c;) be a comparison feature of ¢;. We denote by ~ the existence of a semantic corre-
spondence between comparison features of different elements. Let CF(¢;)NCF (¢;) = {(cf,cf’) |
cf € CF(c;),cf' € CF(cj),cf ~ cf'} be the set composed of the pairs of comparison features
that have a correspondence in ¢; and c;.

The following properties are defined for AFFINITY ().

(P1) Nonnegativity. The semantic similarity of two ODLj3 classes is nonnegative and is at most 1.
Vei,¢j € C,AFFINITY (ci,¢j) > 0 and AFFINITY (¢, ¢) < 1.

13

(P2) Null value. AFFINITY () for two ODL;s classes ¢; and ¢; is null if they do not have
comparison features with semantic correspondence.

CF(c;)NCF(cj) =0 = AFFINITY (¢;,¢j) = 0.

(P3) Identity. The comparison of a ODL3 class with itself always returns the greatest semantic

similarity value.
AFFINITY (¢;,¢;) = 1.

(P4) Commutativity. The semantic similarity of two ODL;3 classes is independent of their
comparison order.
AFFINITY (¢cj,cj) = AFFINITY (cj, ¢;)

(Ps) Monotonicity. Adding comparison features with semantic correspondence to a pair of
ODL/s classes cannot decrease their semantic similarity.
(CF(Ci)ﬂCF(Cj)) C (CF'(Ci)ﬂCFI(Cj)) = AFFINITYCF(CZ', Cj) < AFFINITYCFI(CZ', Cj),
with CF(c;) C CF'(c;) and CF(c;) C CF'(c;)%.

(Pg) Mazimum value. AFFINITY () has value 1 for two ODLs classes ¢; and ¢; if all features
of ¢; have a semantic correspondence with features of ¢; and vice versa, that is,
Vef € CF(¢;)3cf' € CF(cj),(cf,cf') € (CF(c;) N CF(c;)) and Vef € CF(c;)3cf’ €
CF(ci),(cf,cf") € (CF(¢;) NCF(cj)) = AFFINITY (c;, ¢5) = 1.

Criteria for the establishment of semantic correspondences between comparison features de-
pend on the kind of feature under consideration. For example, using names as comparison
features, semantic correspondences can be established using a criterion based on terminological
relationships in the reference ontology, i.e., the Common Thesaurus. The similarity technique
described in [10] performs ODL;s class comparison at the level of attribute domain, by consid-
ering compatibility of domains with respect to type and structure in different ODLjs schemas.
In particular, the following features are considered for ODL;s classes:

e the name of the classes. ODL;s classes are compared with respect to their names. In fact,
names are generally considered the first, heuristic indicator of the semantic similarity of
different schema classes. A Name Affinity coefficient is defined and calculated to reflect
the level of similarity of two ODL ;s classes based on their names.

o Attributes of ODLys classes. ODL;s classes are compared with respect to their attributes,
to conclude about their similarity on the basis also of their structure, in terms of class
properties and referenced classes. In fact, class names alone provide only a partial indica-
tor of semantic similarity, which should be complemented by the analysis of the structure.
Classes having the same real world semantics, besides showing a terminological relation-
ship, are also generally characterized by a semantically similar structure. ODL;s classes
are compared with respect to names and domains of both structural attributes (i.e., at-
tributes with pre-defined domains) and reference attributes (i.e., attributes with a class
domain referencing another class in the schema). A Structural Affinity coefficient is de-
fined and calculated to reflect the level of similarity of two ODLys classes based on their
attributes.

The AFFINITY () value is obtained by combining the Name Affinity coefficient and the Struc-
tural Affinity coefficient into a comprehensive Global Affinity coefficient.

The establishment of affinity coefficients relies on the knowledge in the Common Thesaurus.
A detailed description of the metrics adopted for computation of the affinity coefficients is
given in [10]. To make the numerical evaluation of AFFINITY () possible, each terminological

*Notation AFFINITYcr(ci,c;) is used to indicate that AFFINITY () is evaluated with respect to features
in CF.

14

0.25

\ FD.Bistro

FD.Restaurant

ED.Fast-Food

Figure 2: Example of affinity tree

relationship R in the Common Thesaurus is properly strengthened. The strength on € (0,1]
of a terminological relationship R expresses its implication for similarity. Different types of
relationships have different implications for semantic similarity. In particular, we have ogyn >
opr > ogrr. We assign the highest strength to the SY N relationship, since synonymy indicates
class similarity more precisely than remaining terminological relationships. As for BT /NT and
RT strengths, we consider the semantic similarity implication of schema links represented by
these relationships. Motivations to set g > orr are related to the fact that “is-a” links express
a higher semantic connection between classes than relationships. In our experimentation, we
used OSYN = 1, OBT — ONT = 0.8, and ORT — 0.5.

4.2 Clustering function

The GROU P() function is defined as follows: GROUP() : C — 2¢,

where 2¢ is the powerset of C. GROUP() starts from the set of local ODL;s classes to be
analyzed and returns sets (i.e., clusters) of semantically related classes, on the basis of the
AFFINITY () values for pairs of classes. Let Cl € 2¢ be a cluster of semantically similar
ODL;s classes. The following property holds for GROU P():

(P7) Homogeneity. The value of AFFINITY () between each possible pair of ODL;s classes
in a given cluster Cl is always greater than the AFFINITY () value between a ODL;3

class outside Clj and any classes belonging to Clj.
ch € Cly = AFFINITY (c;,¢;) > AFFINITY (¢, ¢p,), forall Cly, forall ¢;,c; € Cly.

This property ensures that in a given cluster we can find the most similar classes among all pos-
sible classes of C. To cluster semantically similar ODLys classes, we adopt classical clustering
techniques of hierarchical type [6]. The general hierarchical clustering procedure is described in
[10]. As the result of clustering, a tree is obtained, where several clusters, with an associated
AFFINITY () value, can be identified. In the similarity tree, leaves are ODL;s classes and
other nodes are virtual classes which abstract the commonalities of their children classes® and
an associated AFFINITY () value. The root represents the centroid of all classified classes,
and its AFFINITY () value can be null, if no commonalities are identified among all ana-
lyzed ODLj;s classes. Several clusters can be identified in the tree by specifying a threshold
value of AFFINITY (). The number of classes in a cluster depends on the selected value of
AFFINITY (). Once clusters have been selected, ODL;3 classes that have an extensional ter-
minological relationship with at least one class in the cluster and not yet included in it (if any),
are forced to belong to the cluster anyway, to define an integrated global ODL;s class that is
representative of all possible semantically related ODL ;s source classes.

As an example, considering the ODLjs classes of example 2.2, using a threshold T' = 0.5,
two clusters are selected, namely Cl; and Cly, as shown in Figure 2. Cluster Cl; contains all

3Virtual schema elements are called “centroids” in the literature [6]).

15

ODL;s classes describing different kinds of eating place, while cluster Cls contains all ODL;s
classes describing persons. These two cluster are highly homogeneous and contain all classes
characterized by an affinity relationship with a high value with other classes of the cluster and
a low value with classes outside. Moreover, such two clusters contain all involved classes also
with respect to extensional relationships.

A The ODL;: description language

The following is a BNF description for the ODL;s description language. We included the main
syntax fragments which differ from the original ODL grammar

(see http://sparc20.dsi.unimo.it/Momis/documents/odli3 syntax.pdf for the complete
syntax)

(interface_dcl) (interface_header)

{[(interface_body)] [union (interface_body)]};

(interface_header) ::= interface (identifier)
[(inheritance_spec)] [(type_property_list}]
(inheritance_spec) ::= : (scoped_name) [,(inheritance_spec)]

Local schema pattern definition: the wrapper must indicate the kind and the name of the source
of each pattern.

([{source_spec)] [(extent_spec)] [(key_spec)] [{f key_spec}])
source (source_type) (source_name)

file | relational | nfrelational

| object | semistructured

(type_property _list)
(source_spec)
(source_type)

(source_name) = (identifier)

(extent_spec) = extent (extent_list)

(extent _list) = (string) | (string),(extent list)
(key spec) = key][s] (keylist)

(f_key_spec) = foreign_key ({f_key_list})

references (identifier)[,(f_key_spec)]

Global pattern definition rule, used to map the attributes between the global definition and the
corrisponding ones in the local sources.

(attr_dcl) ::= [readonly] attribute [(domain_type)]
(attribute_name) [*] [(fixed_array size)]
[(mapping_rule_dcl)]

(mapping_rule dcl) : mapping_rule (rule_list)

(rule_list) ::= (rule) | (rule),(rule list)

(rule) = (local_attrname) |‘(identifier)’

{and_expression) |(union_expression)
(and_expression) = ((local_attr name) and({and_list))
(andlist) = (local_attr name) | (local_attr name) and (and_list)
(union_expression) = ((local_attr name) union (union_list) on (identifier))
(union list) = (local_attr name) | (local_attr_name) union

{union list)

(local_attr_name) (source_name}.{class_name).(attribute_name)

Relationships used to define the Common Thesaurus.

16

(relationships_list) ::= (relationship_dcl); | (relationship_dcl);
(relationships_list})

(relationships_dcl) ::= (local.name) (relationship_type)
(local_name)

(local_name) ::= (source-name). (local_class_name)

[.(local_attr name}]
(intensional relationship) |
(extensional relationship)
SYN | BT | NT | RT
SYN.E | BT_E | NT_E

(relationship_type) =

(intensional relationship)
(extensional relationship) ::=

OLCD integrity constraint definition: declaration of rule (using if then definition) valid for each
instance of the data; mapping rule specification (or and union specification rule).

(rule_list)
(rule_dcl)
(rule_spec)
(rule_pre)
(rule_post)
(case_dcl)
(case list)
(case_spec)
(rule_bodylist)

(rule_body)

(rule_const_op)
(rule_cast)
(dotted name)
(forall)

(rule_dcl); | (rule_dcl); (rule_list)

rule (identifier) (rule_spec)

(rule_pre) then (rule_post) | {{case_dcl)}
(forall) (identifier) in (identifier) : (rule_body_list)
(rule_body list})

case of (identifier) : (case_list)
(case_spec) | (case_spec) {case_list)
(identifier) : (identifier) ;
((rule_bodylist})) | (rule_body) |
rule_body list) and (rule_body) |
rule_body_list) and ({rule_body list))
dotted_name) (rule_const_op) (literal_value) |
dotted name) (rule_const_op)

rule_cast) (literal_value) |

dotted name) in {(dotted name) |

forall) (identifier) in (dotted_name) :
rule_body_list) | exists (identifier) in
(dotted-name) : (rule_body_list)
—>]<|>1<

({simple_type_spec))

(identifier) | (identifier). (dotted_name)
for all | forall

(
(
(
(
(
(
(
(

17

References

(1]

2]
3]
[4]
[5]
[6]
[7]

D. Beneventano, S. Bergamaschi, S. Lodi, and C. Sartori. Consistency checking in complex object database
schemata with integrity constraints. IEEE Transactions on Knowledge and Data Engineering, 10:576-598,
July/August 1998.

P. Buneman, S. Davidson, M. Fernandez, and D. Suciu. Adding structure to unstructured data. In Proc. of
ICDT 1997, pages 336-350, Delphi, Greece, 1997.

L. Cardelli. A semantics of multiple inheritance. In Semantics of Data Types, volume 173 of Lecture Notes
in Computer Science, pages 51-67. Springer-Verlag, 1984.

T. Catarci and M. Lenzerini. Representing and using interschema knowledge in cooperative information
systems. Journal of Intelligent and Cooperative Information Systems, 2(4):375-398, 1993.

R. G. G. Cattell, editor. The Object Database Standard: ODMG93. Morgan Kaufmann Publishers, San
Mateo, CA, 1994.

B. Everitt. Computer-Aided Database Design: the DATAID Project. Heinemann Educational Books Ltd,
Social Science Research Council, 1974.

R. Hull and R. King et al Arpa i® reference architecture, 1995. Available at
http://www.isse.gmu.edu/I3_Arch /index.html.

A.G. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38(11):39-41, 1995.
S. Nestorov, S. Abiteboul, and R. Motwani. Inferring structure in semistructured data. SIGMOD Record,
26(4):39-43, 1997.

Luigi Palopoli, Domenico Rosaci, Giorgio Terracina, Domenico Ursino, Ilario Benetti, Sonia Bergamaschi,
Domenico Beneventano, Francesco Guerra, Federica Mandreoli, Maurizio Vincini, Silvana Castano, Vale-
ria De Antonellis, and Michele Melchiori. Methodologies and techniques for the extraction, the representa-
tion and the integration of structured and semi-structured information sources. Technical Report D1.R1,
Integrazione, Warehousing e Mining di sorgenti eterogenee, March 2001.

18

